Suppr超能文献

阿尔茨海默病全基因组关联研究风险基因座的解读。

Interpretation of risk loci from genome-wide association studies of Alzheimer's disease.

机构信息

Ronald M Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Ronald M Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Lancet Neurol. 2020 Apr;19(4):326-335. doi: 10.1016/S1474-4422(19)30435-1. Epub 2020 Jan 24.

Abstract

BACKGROUND

Alzheimer's disease is a debilitating and highly heritable neurological condition. As such, genetic studies have sought to understand the genetic architecture of Alzheimer's disease since the 1990s, with successively larger genome-wide association studies (GWAS) and meta-analyses. These studies started with a small sample size of 1086 individuals in 2007, which was able to identify only the APOE locus. In 2013, the International Genomics of Alzheimer's Project (IGAP) did a meta-analysis of all existing GWAS using data from 74 046 individuals, which stood as the largest Alzheimer's disease GWAS until 2018. This meta-analysis discovered 19 susceptibility loci for Alzheimer's disease in populations of European ancestry.

RECENT DEVELOPMENTS

Three new Alzheimer's disease GWAS published in 2018 and 2019, which used larger sample sizes and proxy phenotypes from biobanks, have substantially increased the number of known susceptibility loci in Alzheimer's disease to 40. The first, an updated GWAS from IGAP, included 94 437 individuals and discovered 24 susceptibility loci. Although IGAP sought to increase sample size by recruiting additional clinical cases and controls, the two other studies used parental family history of Alzheimer's disease to define proxy cases and controls in the UK Biobank for a genome-wide association by proxy, which was meta-analysed with data from GWAS of clinical Alzheimer's disease to attain sample sizes of 388 324 and 534 403 individuals. These two studies identified 27 and 29 susceptibility loci, respectively. However, the three studies were not independent because of the large overlap in their participants, and interpretation can be challenging because different variants and genes were highlighted by each study, even in the same locus. Furthermore, neither the variant with the strongest Alzheimer's disease association nor the nearest gene are necessarily causal. This situation presents difficulties for experimental studies, drug development, and other future research. WHERE NEXT?: The ultimate goal of understanding the genetic architecture of Alzheimer's disease is to characterise novel biological pathways that underly Alzheimer's disease pathogenesis and to identify novel drug targets. GWAS have successfully contributed to the characterisation of the genetic architecture of Alzheimer's disease, with the identification of 40 susceptibility loci; however, this does not equate to the discovery of 40 Alzheimer's disease genes. To identify Alzheimer's disease genes, these loci need to be mapped to variants and genes through functional genomics studies that combine annotation of variants, gene expression, and gene-based or pathway-based analyses. Such studies are ongoing and have validated several genes at Alzheimer's disease loci, but greater sample sizes and cell-type specific data are needed to map all GWAS loci.

摘要

背景

阿尔茨海默病是一种使人衰弱且具有高度遗传性的神经疾病。自 20 世纪 90 年代以来,遗传研究一直致力于了解阿尔茨海默病的遗传结构,研究人员进行了越来越大规模的全基因组关联研究(GWAS)和荟萃分析。这些研究始于 2007 年对 1086 人的小样本量,仅能够确定 APOE 基因座。2013 年,国际阿尔茨海默病基因组学项目(IGAP)对 74046 名个体的所有现有 GWAS 进行了荟萃分析,这是当时最大的阿尔茨海默病 GWAS。该荟萃分析在欧洲人群中发现了 19 个阿尔茨海默病易感性基因座。

最新进展

2018 年和 2019 年发表的三项新的阿尔茨海默病 GWAS 研究使用了更大的样本量和生物库中的替代表型,使阿尔茨海默病的已知易感性基因座数量从 40 个增加到 40 个。第一项是 IGAP 的更新 GWAS,纳入了 94047 名个体,并发现了 24 个易感性基因座。尽管 IGAP 试图通过招募更多的临床病例和对照来增加样本量,但另外两项研究使用了英国生物银行中阿尔茨海默病患者父母的家族史来定义替代病例和对照,通过全基因组关联代理进行分析,并与临床阿尔茨海默病 GWAS 的数据进行荟萃分析,以获得 388324 名和 534403 名个体的样本量。这两项研究分别确定了 27 个和 29 个易感性基因座。然而,由于参与者的大量重叠,这三项研究并不独立,并且由于每个研究都强调了不同的变体和基因,即使在相同的基因座中,解释也具有挑战性。此外,与阿尔茨海默病关联最强的变体或最接近的基因不一定是因果关系。这种情况给实验研究、药物开发和其他未来研究带来了困难。下一步是什么?:了解阿尔茨海默病遗传结构的最终目标是描述导致阿尔茨海默病发病机制的新生物学途径,并确定新的药物靶点。GWAS 已成功有助于描述阿尔茨海默病的遗传结构,确定了 40 个易感性基因座;然而,这并不等同于发现 40 个阿尔茨海默病基因。为了鉴定阿尔茨海默病基因,需要通过结合变异注释、基因表达以及基于基因或基于途径的分析的功能基因组学研究,将这些基因座映射到变体和基因上。正在进行此类研究,并已在阿尔茨海默病基因座中验证了几个基因,但需要更大的样本量和特定于细胞类型的数据来映射所有 GWAS 基因座。

相似文献

6
Polygenic risk and hazard scores for Alzheimer's disease prediction.多基因风险和阿尔茨海默病预测的危害评分。
Ann Clin Transl Neurol. 2019 Feb 18;6(3):456-465. doi: 10.1002/acn3.716. eCollection 2019 Mar.

引用本文的文献

5
Machine learning in Alzheimer's disease genetics.阿尔茨海默病遗传学中的机器学习
Nat Commun. 2025 Jul 22;16(1):6726. doi: 10.1038/s41467-025-61650-z.

本文引用的文献

3
The neuropathological diagnosis of Alzheimer's disease.阿尔茨海默病的神经病理学诊断。
Mol Neurodegener. 2019 Aug 2;14(1):32. doi: 10.1186/s13024-019-0333-5.
6
Genomics of disease risk in globally diverse populations.全球不同人群疾病风险的基因组学。
Nat Rev Genet. 2019 Sep;20(9):520-535. doi: 10.1038/s41576-019-0144-0. Epub 2019 Jun 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验