Suppr超能文献

用于计算机辅助药物设计的半经验量子力学评分函数。

The Semiempirical Quantum Mechanical Scoring Function for In Silico Drug Design.

作者信息

Lepšík Martin, Řezáč Jan, Kolář Michal, Pecina Adam, Hobza Pavel, Fanfrlík Jindřich

机构信息

Institute of Organic Chemistry and Biochemistry and Gilead Science and IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6 (Czech Republic).

Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc (Czech Republic).

出版信息

Chempluschem. 2013 Sep;78(9):921-931. doi: 10.1002/cplu.201300199. Epub 2013 Aug 13.

Abstract

This Minireview discusses the latest developments in modern quantum mechanics (QM)-based computer-aided drug design, especially using semiempirical QM (SQM) methods. It first tackles biochemical and biophysical quantities and the approaches to their measurements. Protein-ligand affinities are determined mostly by noncovalent interactions. The text thus illustrates how these can be accurately treated with SQM methods. Next, a construction of a modern SQM-based scoring function is presented and its applications listed. In summary, SQM-based scoring is a promising modern efficient strategy to be exploited in computer-aided drug design.

摘要

本综述讨论了基于现代量子力学(QM)的计算机辅助药物设计的最新进展,特别是使用半经验量子力学(SQM)方法的情况。它首先探讨了生物化学和生物物理量及其测量方法。蛋白质-配体亲和力主要由非共价相互作用决定。本文因此说明了如何用SQM方法准确处理这些相互作用。接下来,介绍了基于现代SQM的评分函数的构建及其应用。总之,基于SQM的评分是一种有前途的现代高效策略,可用于计算机辅助药物设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验