Suppr超能文献

量子化学嵌入方法:从材料到生命科学的应用。

Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences.

机构信息

Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.

出版信息

J Am Chem Soc. 2020 Feb 19;142(7):3281-3295. doi: 10.1021/jacs.9b10780. Epub 2020 Feb 11.

Abstract

Quantum mechanical embedding methods hold the promise to transform not just the way calculations are performed, but to significantly reduce computational costs and improve scaling for macro-molecular systems containing hundreds if not thousands of atoms. The field of embedding has grown increasingly broad with many approaches of different intersecting flavors. In this perspective, we lay out the methods into two streams: QM:MM and QM:QM, showcasing the advantages and disadvantages of both. We provide a review of the literature, the underpinning theories including our contributions, and we highlight current applications with select examples spanning both materials and life sciences. We conclude with prospects and future outlook on embedding, and our view on the use of universal test case scenarios for cross-comparisons of the many available (and future) embedding theories.

摘要

量子力学嵌入方法有望不仅改变计算方式,而且还能显著降低计算成本并提高包含数百甚至数千个原子的大分子系统的扩展性。嵌入领域的发展越来越广泛,有许多不同的交叉风味的方法。在这篇观点文章中,我们将方法分为两类:QM:MM 和 QM:QM,展示了两者的优缺点。我们提供了文献综述、基础理论,包括我们的贡献,并通过材料和生命科学领域的精选示例突出了当前的应用。最后,我们对嵌入的前景和未来展望进行了总结,并对使用通用测试案例场景来对许多现有(和未来)嵌入理论进行交叉比较提出了看法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验