Alessio Maristella, Paran Garrette Pauley, Utku Cansu, Grüneis Andreas, Jagau Thomas-C
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria.
Phys Chem Chem Phys. 2024 Jun 19;26(24):17028-17041. doi: 10.1039/d4cp01129e.
We investigate the reliability of two cost-effective coupled-cluster methods for computing spin-state energetics and spin-related properties of a set of open-shell transition-metal complexes. Specifically, we employ the second-order approximate coupled-cluster singles and doubles (CC2) method and projection-based embedding that combines equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) with density functional theory (DFT). The performance of CC2 and EOM-CCSD-in-DFT is assessed against EOM-CCSD. The chosen test set includes two hexaaqua transition-metal complexes containing Fe(II) and Fe(III), and a large Co(II)-based single-molecule magnet with a non-aufbau ground state. We find that CC2 describes the excited states more accurately, reproducing EOM-CCSD excitation energies within 0.05 eV. However, EOM-CCSD-in-DFT excels in describing transition orbital angular momenta and spin-orbit couplings. Moreover, for the Co(II) molecular magnet, using EOM-CCSD-in-DFT eigenstates and spin-orbit couplings, we compute spin-reversal energy barriers, as well as temperature-dependent and field-dependent magnetizations and magnetic susceptibilities that closely match experimental values within spectroscopic accuracy. These results underscore the efficiency of CC2 in computing state energies of multi-configurational, open-shell systems and highlight the utility of the more cost-efficient EOM-CCSD-in-DFT for computing spin-orbit couplings and magnetic properties of complex and large molecular magnets.
我们研究了两种经济高效的耦合簇方法用于计算一组开壳层过渡金属配合物的自旋态能量和自旋相关性质的可靠性。具体而言,我们采用了二阶近似耦合簇单双激发(CC2)方法以及基于投影的嵌入方法,该方法将运动方程耦合簇单双激发(EOM - CCSD)与密度泛函理论(DFT)相结合。将CC2和DFT中的EOM - CCSD的性能与EOM - CCSD进行了评估。所选测试集包括两个含有Fe(II)和Fe(III)的六水合过渡金属配合物,以及一个具有非构造基态的大型基于Co(II)的单分子磁体。我们发现CC2能更准确地描述激发态,重现的EOM - CCSD激发能在0.05 eV以内。然而,DFT中的EOM - CCSD在描述跃迁轨道角动量和自旋 - 轨道耦合方面表现出色。此外,对于Co(II)分子磁体,使用DFT中的EOM - CCSD本征态和自旋 - 轨道耦合,我们计算了自旋反转能垒以及与温度和磁场相关的磁化强度和磁化率,这些结果在光谱精度范围内与实验值紧密匹配。这些结果强调了CC2在计算多组态、开壳层系统的态能量方面的效率,并突出了成本效益更高的DFT中的EOM - CCSD在计算复杂大分子磁体的自旋 - 轨道耦合和磁性性质方面的实用性。