Suppr超能文献

CIRCADA:一款具有教育重点的用于探索实验和合成生物钟时间序列的闪亮应用程序。

CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis.

机构信息

Mathematics and Statistics, Amherst College, Amherst, Massachusetts.

Neuroscience Program, Smith College, Northampton, Massachusetts.

出版信息

J Biol Rhythms. 2020 Apr;35(2):214-222. doi: 10.1177/0748730419900866. Epub 2020 Jan 28.

Abstract

Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis-Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis-Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.

摘要

昼夜节律是生理和行为的日常波动,可以通过记录体温、运动活动或生物发光报告等多种措施来评估。这些不同类型的数据在波形、噪声特征、典型采样率和记录长度方面可能有很大差异。我们开发了 2 个 Shiny 应用程序来探索这些数据,能够可视化和分析昼夜节律参数,如周期和相位。方法包括离散小波变换、正弦拟合、隆姆-斯卡尔格周期图、自相关和最大熵谱分析,以了解每种方法在每种类型的数据上的效果如何。这些应用程序还提供了这些方法的教育概述和指导,支持对这种类型的分析不熟悉的人的培训。CIRCADA-E(用于数据分析的昼夜节律应用程序-实验时间序列)允许用户探索一个大型的经过精心策划的实验数据集,其中包含来自多个组织的小鼠体温、运动活动和 PER2::LUC 节律的记录。CIRCADA-S(用于数据分析的昼夜节律应用程序-合成时间序列)生成和分析用户指定参数的时间序列,从而演示了周期和相位估计的准确性如何取决于噪声的类型和水平、采样率、记录长度和方法。我们通过 2 个计算机模拟案例研究展示了这些应用程序的潜在用途。

相似文献

3
Wavelet-based time series analysis of circadian rhythms.基于小波的节律时间序列分析。
J Biol Rhythms. 2011 Oct;26(5):454-63. doi: 10.1177/0748730411416330.
10
Circadian rhythms of hedonic drinking behavior in mice.小鼠享乐性饮酒行为的昼夜节律
Neuroscience. 2017 May 4;349:229-238. doi: 10.1016/j.neuroscience.2017.03.002. Epub 2017 Mar 10.

本文引用的文献

7
Wavelet-based analysis of circadian behavioral rhythms.基于小波变换的昼夜行为节律分析
Methods Enzymol. 2015;551:95-119. doi: 10.1016/bs.mie.2014.10.011. Epub 2014 Dec 26.
8
Detecting rhythms in time series with RAIN.使用RAIN检测时间序列中的节律。
J Biol Rhythms. 2014 Dec;29(6):391-400. doi: 10.1177/0748730414553029. Epub 2014 Oct 17.
10
Cosinor-based rhythmometry.基于余弦节律分析的节律测量法。
Theor Biol Med Model. 2014 Apr 11;11:16. doi: 10.1186/1742-4682-11-16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验