Suppr超能文献

LimoRhyde:一种灵活的节律转录组数据分析方法。

LimoRhyde: A Flexible Approach for Differential Analysis of Rhythmic Transcriptome Data.

机构信息

Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee.

Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee.

出版信息

J Biol Rhythms. 2019 Feb;34(1):5-18. doi: 10.1177/0748730418813785. Epub 2018 Nov 25.

Abstract

Unraveling the effects of genetic or environmental perturbations on biological rhythms requires detecting changes in rhythmicity across multiple conditions. Although methods to detect rhythmicity in genome-scale data are well established, methods to detect changes in rhythmicity or changes in average expression between experimental conditions are often ad hoc and statistically unreliable. Here we present LimoRhyde (linear models for rhythmicity, design), a flexible approach for analyzing transcriptome data from circadian systems. Borrowing from cosinor regression, LimoRhyde decomposes circadian or zeitgeber time into multiple components to fit a linear model to the expression of each gene. The linear model can accommodate any number of additional experimental variables, whether discrete or continuous, making it straightforward to detect differential rhythmicity and differential expression using state-of-the-art methods for analyzing microarray and RNA-seq data. In this approach, differential rhythmicity corresponds to a statistical interaction between an experimental variable and circadian time, whereas differential expression corresponds to the main effect of an experimental variable while accounting for circadian time. To validate LimoRhyde's performance, we applied it to simulated data. To demonstrate LimoRhyde's versatility, we applied it to murine and human circadian transcriptome datasets acquired under various experimental designs. Our results show how LimoRhyde systematizes the analysis of such data, and suggest that LimoRhyde could prove valuable for assessing how circadian systems respond to perturbations.

摘要

揭示遗传或环境干扰对生物节律的影响需要检测多个条件下的节律变化。尽管在基因组规模数据中检测节律的方法已经很成熟,但检测节律变化或实验条件下平均表达变化的方法通常是特定的,且在统计学上不可靠。在这里,我们提出了 LimoRhyde(节律的线性模型,设计),这是一种分析昼夜节律系统转录组数据的灵活方法。LimoRhyde 借鉴了余弦回归,将昼夜节律或时间信号分解为多个分量,以便为每个基因的表达拟合线性模型。线性模型可以容纳任意数量的额外实验变量,无论是离散的还是连续的,这使得使用分析微阵列和 RNA-seq 数据的最新方法来检测差异节律和差异表达变得非常简单。在这种方法中,差异节律对应于实验变量和昼夜时间之间的统计相互作用,而差异表达对应于实验变量的主要效应,同时考虑了昼夜时间。为了验证 LimoRhyde 的性能,我们将其应用于模拟数据。为了展示 LimoRhyde 的多功能性,我们将其应用于在各种实验设计下获得的鼠和人昼夜转录组数据集。我们的结果表明了 LimoRhyde 如何系统地分析这些数据,并表明 LimoRhyde 可能对评估昼夜系统对干扰的反应非常有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47c1/6376636/51100d13e6fe/10.1177_0748730418813785-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验