Suppr超能文献

一种用于实时监测时钟基因振荡和血压昼夜节律的新型糖尿病小鼠模型。

A Novel Diabetic Mouse Model for Real-Time Monitoring of Clock Gene Oscillation and Blood Pressure Circadian Rhythm.

机构信息

Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky.

Research and Development, Lexington Veterans Affairs Medical Center, Lexington, Kentucky.

出版信息

J Biol Rhythms. 2019 Feb;34(1):51-68. doi: 10.1177/0748730418803719. Epub 2018 Oct 2.

Abstract

Diabetic patients have an increased prevalence of blood pressure (BP) circadian rhythm disruption, which is associated with an increased risk of target organ damage and detrimental cardiovascular events. Limited information is available regarding the role of clock genes in the disruption of BP circadian rhythm in diabetes due to the lack of a diabetic animal model that allows real-time monitoring of clock gene oscillation. Here, we generated a novel diabetic db/db-mPer2 mouse model by crossing type 2 diabetic db/db mice with mPer2 knock-in mice. The daily rhythms of BP, heart rate, locomotor activity, and food and water intake were acquired by radiotelemetry or using metabolic chambers. The daily oscillation of mPer2 bioluminescence was recorded by LumiCycle in real-time in tissue explants and using the IVIS system in vivo. Our results show that db/db-mPer2 mice are obese, diabetic, and glucose intolerant. The db/db-mPer2 mice displayed a compromised BP daily rhythm, which was associated with disrupted daily rhythms in baroreflex sensitivity, locomotor activity, and metabolism, but not heart rate or food and water intake. The phase of the mPer2 daily oscillation was advanced to different extents in the explanted peripheral tissues from db/db-mPer2 mice relative to control mice. In contrast, no phase shift was detected in mPer2 daily oscillations in the explanted SCN. Moreover, advanced phase shift of the mPer2 daily oscillation was detected in the liver, kidney and submandibular gland in vivo of db/db-mPer2 mice. In conclusion, the diabetic db/db-mPer2 mouse is a novel animal model that allows real-time monitoring of mPer2 circadian rhythms ex vivo and in vivo. The results from db/db-mPer2 mice suggest that the desynchrony of mPer2 daily oscillation in peripheral tissues contributes to the loss of BP daily oscillation in diabetes.

摘要

糖尿病患者血压(BP)昼夜节律紊乱的发生率增加,这与靶器官损伤和不良心血管事件的风险增加有关。由于缺乏允许实时监测时钟基因振荡的糖尿病动物模型,因此关于时钟基因在糖尿病中 BP 昼夜节律紊乱中的作用的信息有限。在这里,我们通过将 2 型糖尿病 db/db 小鼠与 mPer2 敲入小鼠杂交,生成了一种新型糖尿病 db/db-mPer2 小鼠模型。通过无线电遥测或使用代谢室来获取 BP、心率、运动活动以及食物和水摄入的日常节律。通过 LumiCycle 在组织外植体中实时记录 mPer2 生物发光的日常振荡,并在体内使用 IVIS 系统进行记录。我们的结果表明,db/db-mPer2 小鼠肥胖、患有糖尿病且葡萄糖耐量受损。db/db-mPer2 小鼠的 BP 日常节律受损,与血压反射敏感性、运动活动和代谢的日常节律紊乱有关,但与心率或食物和水摄入无关。与对照小鼠相比,db/db-mPer2 小鼠的外周组织中 mPer2 的日常振荡相位提前到不同程度。相比之下,在 SCN 的外植体中未检测到 mPer2 日常振荡的相位偏移。此外,在 db/db-mPer2 小鼠的肝脏、肾脏和颌下腺中体内检测到 mPer2 日常振荡的提前相位偏移。总之,糖尿病 db/db-mPer2 小鼠是一种新型动物模型,允许实时监测 ex vivo 和体内的 mPer2 昼夜节律。db/db-mPer2 小鼠的结果表明,外周组织中 mPer2 日常振荡的失同步导致糖尿病中 BP 日常振荡的丧失。

相似文献

1
A Novel Diabetic Mouse Model for Real-Time Monitoring of Clock Gene Oscillation and Blood Pressure Circadian Rhythm.
J Biol Rhythms. 2019 Feb;34(1):51-68. doi: 10.1177/0748730418803719. Epub 2018 Oct 2.
2
Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties.
Eur J Neurosci. 2011 Apr;33(8):1533-40. doi: 10.1111/j.1460-9568.2011.07629.x. Epub 2011 Mar 2.
3
Role of sympathetic pathway in light-phase time-restricted feeding-induced blood pressure circadian rhythm alteration.
Front Nutr. 2022 Sep 8;9:969345. doi: 10.3389/fnut.2022.969345. eCollection 2022.
4
IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.
J Biol Rhythms. 2015 Oct;30(5):396-407. doi: 10.1177/0748730415593377. Epub 2015 Jul 6.
5
Hypertension and disrupted blood pressure circadian rhythm in type 2 diabetic db/db mice.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1634-41. doi: 10.1152/ajpheart.00257.2008. Epub 2008 Aug 15.
8
Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver.
Diabetologia. 2004 Aug;47(8):1425-36. doi: 10.1007/s00125-004-1461-0. Epub 2004 Jul 29.
9
10
Embryonic development and maternal regulation of murine circadian clock function.
Chronobiol Int. 2015 Apr;32(3):416-27. doi: 10.3109/07420528.2014.986576. Epub 2014 Nov 28.

引用本文的文献

1
Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway.
Cell Death Discov. 2024 Mar 11;10(1):129. doi: 10.1038/s41420-024-01904-9.
2
Molecular mechanisms of artificial light at night affecting circadian rhythm disturbance.
Arch Toxicol. 2024 Feb;98(2):395-408. doi: 10.1007/s00204-023-03647-5. Epub 2023 Dec 16.
3
Mapping the daily rhythmic transcriptome in the diabetic retina.
Vision Res. 2024 Jan;214:108339. doi: 10.1016/j.visres.2023.108339. Epub 2023 Nov 30.
4
Diabetes Reshapes the Circadian Transcriptome Profile in Murine Retina.
Invest Ophthalmol Vis Sci. 2023 Oct 3;64(13):3. doi: 10.1167/iovs.64.13.3.
6
Application and trend of bioluminescence imaging in metabolic syndrome research.
Front Chem. 2023 Jan 9;10:1113546. doi: 10.3389/fchem.2022.1113546. eCollection 2022.
7
Toward Precision Medicine: Circadian Rhythm of Blood Pressure and Chronotherapy for Hypertension - 2021 NHLBI Workshop Report.
Hypertension. 2023 Mar;80(3):503-522. doi: 10.1161/HYPERTENSIONAHA.122.19372. Epub 2022 Nov 30.
8
Role of sympathetic pathway in light-phase time-restricted feeding-induced blood pressure circadian rhythm alteration.
Front Nutr. 2022 Sep 8;9:969345. doi: 10.3389/fnut.2022.969345. eCollection 2022.
10
A Growing Link between Circadian Rhythms, Type 2 Diabetes Mellitus and Alzheimer's Disease.
Int J Mol Sci. 2022 Jan 3;23(1):504. doi: 10.3390/ijms23010504.

本文引用的文献

1
Bmal1 in Perivascular Adipose Tissue Regulates Resting-Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen.
Circulation. 2018 Jul 3;138(1):67-79. doi: 10.1161/CIRCULATIONAHA.117.029972. Epub 2018 Jan 25.
2
Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.
Mol Metab. 2016 Jul 1;5(8):635-645. doi: 10.1016/j.molmet.2016.06.012. eCollection 2016 Aug.
4
Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants.
Lancet. 2016 Apr 9;387(10027):1513-1530. doi: 10.1016/S0140-6736(16)00618-8. Epub 2016 Apr 6.
5
Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival.
Sci Transl Med. 2016 Feb 3;8(324):324ra16. doi: 10.1126/scitranslmed.aad3305.
8
Disruption of Daily Rhythms by High-Fat Diet Is Reversible.
PLoS One. 2015 Sep 14;10(9):e0137970. doi: 10.1371/journal.pone.0137970. eCollection 2015.
9
Hepatic Bmal1 Regulates Rhythmic Mitochondrial Dynamics and Promotes Metabolic Fitness.
Cell Metab. 2015 Oct 6;22(4):709-20. doi: 10.1016/j.cmet.2015.08.006. Epub 2015 Sep 10.
10
Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work.
Biochem Biophys Res Commun. 2015 Sep 25;465(3):556-61. doi: 10.1016/j.bbrc.2015.08.059. Epub 2015 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验