Suppr超能文献

静息人血小板中α颗粒、致密颗粒、线粒体及小管系统排列的三维超微结构分析

3D ultrastructural analysis of α-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets.

作者信息

Pokrovskaya Irina D, Yadav Shilpi, Rao Amith, McBride Emma, Kamykowski Jeffrey A, Zhang Guofeng, Aronova Maria A, Leapman Richard D, Storrie Brian

机构信息

Department of Physiology and Biophysics University of Arkansas for Medical Sciences Little Rock AR USA.

Laboratory of Cellular Imaging and Macromolecular Biophysics NIBIB NIH Bethesda MD USA.

出版信息

Res Pract Thromb Haemost. 2019 Oct 25;4(1):72-85. doi: 10.1002/rth2.12260. eCollection 2020 Jan.

Abstract

BACKGROUND

State-of-the-art 3-dimensional (3D) electron microscopy approaches provide a new standard for the visualization of human platelet ultrastructure. Application of these approaches to platelets rapidly fixed prior to purification to minimize activation should provide new insights into resting platelet ultrastructure.

OBJECTIVES

Our goal was to determine the 3D organization of α-granules, dense granules, mitochondria, and canalicular system in resting human platelets and map their spatial relationships.

METHODS

We used serial block face-scanning electron microscopy images to render the 3D ultrastructure of α-granules, dense granules, mitochondria, canalicular system, and plasma membrane for 30 human platelets, 10 each from 3 donors. α-Granule compositional data were assessed by sequential, serial section cryo-immunogold electron microscopy and by immunofluorescence (structured illumination microscopy).

RESULTS AND CONCLUSIONS

α-Granule number correlated linearly with platelet size, while dense granule and mitochondria number had little correlation with platelet size. For all subcellular compartments, individual organelle parameters varied considerably and organelle volume fraction had little correlation with platelet size. Three-dimensional data from 30 platelets indicated only limited spatial intermixing of the different organelle classes. Interestingly, almost 70% of α-granules came within ≤35 nm of each other, a distance associated in other cell systems with protein-mediated contact sites. Size and shape analysis of the 1488 α-granules analyzed revealed no more variation than that expected for a Gaussian distribution. Protein distribution data indicated that all α-granules likely contained the same major set of proteins, albeit at varying amounts and varying distribution within the granule matrix.

摘要

背景

先进的三维(3D)电子显微镜技术为人类血小板超微结构的可视化提供了新的标准。将这些技术应用于纯化前快速固定以尽量减少激活的血小板,应能为静息血小板超微结构提供新的见解。

目的

我们的目标是确定静息人类血小板中α颗粒、致密颗粒、线粒体和管道系统的三维组织,并绘制它们的空间关系图。

方法

我们使用连续块面扫描电子显微镜图像来呈现30个人类血小板的α颗粒、致密颗粒、线粒体、管道系统和质膜的三维超微结构,每个供体各10个血小板。通过连续系列切片冷冻免疫金电子显微镜和免疫荧光(结构照明显微镜)评估α颗粒的组成数据。

结果与结论

α颗粒数量与血小板大小呈线性相关,而致密颗粒和线粒体数量与血小板大小几乎没有相关性。对于所有亚细胞区室,单个细胞器参数差异很大,细胞器体积分数与血小板大小几乎没有相关性。来自30个血小板的三维数据表明,不同细胞器类别之间的空间混合有限。有趣的是,几乎70%的α颗粒彼此之间的距离≤35 nm,在其他细胞系统中,这个距离与蛋白质介导的接触位点有关。对1488个α颗粒进行的大小和形状分析显示,其变化不超过高斯分布预期的范围。蛋白质分布数据表明,所有α颗粒可能都含有相同的主要蛋白质组,尽管其含量和在颗粒基质中的分布各不相同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d9f/6971324/9468b27371c6/RTH2-4-72-g001.jpg

相似文献

1
3D ultrastructural analysis of α-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets.
Res Pract Thromb Haemost. 2019 Oct 25;4(1):72-85. doi: 10.1002/rth2.12260. eCollection 2020 Jan.
2
Structural analysis of resting mouse platelets by 3D-EM reveals an unexpected variation in α-granule shape.
Platelets. 2021 Jul 4;32(5):608-617. doi: 10.1080/09537104.2020.1799970. Epub 2020 Aug 20.
3
Evaluation of human platelet granules by structured illumination laser fluorescence microscopy.
Platelets. 2023 Dec;34(1):2157808. doi: 10.1080/09537104.2022.2157808.
5
The platelet interior revisited: electron tomography reveals tubular alpha-granule subtypes.
Blood. 2010 Aug 19;116(7):1147-56. doi: 10.1182/blood-2010-02-268680. Epub 2010 May 3.
9
Canalicular system reorganization during mouse platelet activation as revealed by 3D ultrastructural analysis.
Platelets. 2021 Jan 2;32(1):97-104. doi: 10.1080/09537104.2020.1719993. Epub 2020 Jan 31.

引用本文的文献

1
Sequential simulation of regeneration-specific microenvironments using scaffolds loaded with nanoplatelet vesicles enhances bone regeneration.
Bioact Mater. 2025 Apr 26;50:475-493. doi: 10.1016/j.bioactmat.2025.04.018. eCollection 2025 Aug.
2
The winding road to platelet α-granules.
Front Cell Dev Biol. 2025 Apr 16;13:1584059. doi: 10.3389/fcell.2025.1584059. eCollection 2025.
3
The Regenerative Marriage Between High-Density Platelet-Rich Plasma and Adipose Tissue.
Int J Mol Sci. 2025 Feb 27;26(5):2154. doi: 10.3390/ijms26052154.
5
Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology.
J Nanobiotechnology. 2024 Jun 24;22(1):363. doi: 10.1186/s12951-024-02605-2.
7
Roles of G proteins and their GTPase-activating proteins in platelets.
Biosci Rep. 2024 May 29;44(5). doi: 10.1042/BSR20231420.
9
Human platelets contain a pool of free zinc in dense granules.
Res Pract Thromb Haemost. 2024 Feb 15;8(2):102352. doi: 10.1016/j.rpth.2024.102352. eCollection 2024 Feb.

本文引用的文献

1
Coming together to define membrane contact sites.
Nat Commun. 2019 Mar 20;10(1):1287. doi: 10.1038/s41467-019-09253-3.
2
SNARE-dependent membrane fusion initiates α-granule matrix decondensation in mouse platelets.
Blood Adv. 2018 Nov 13;2(21):2947-2958. doi: 10.1182/bloodadvances.2018019158.
3
Here, there, and everywhere: The importance of ER membrane contact sites.
Science. 2018 Aug 3;361(6401). doi: 10.1126/science.aan5835.
5
Cellubrevin/vesicle-associated membrane protein-3-mediated endocytosis and trafficking regulate platelet functions.
Blood. 2017 Dec 28;130(26):2872-2883. doi: 10.1182/blood-2017-02-768176. Epub 2017 Sep 20.
6
Endoplasmic Reticulum-Plasma Membrane Contact Sites.
Annu Rev Biochem. 2017 Jun 20;86:659-684. doi: 10.1146/annurev-biochem-061516-044932. Epub 2017 Feb 23.
7
The cellular basis of platelet secretion: Emerging structure/function relationships.
Platelets. 2017 Mar;28(2):108-118. doi: 10.1080/09537104.2016.1257786. Epub 2016 Dec 23.
8
Golgi proteins in circulating human platelets are distributed across non-stacked, scattered structures.
Platelets. 2017 Jun;28(4):400-408. doi: 10.1080/09537104.2016.1235685. Epub 2016 Oct 18.
9
Respective contributions of single and compound granule fusion to secretion by activated platelets.
Blood. 2016 Nov 24;128(21):2538-2549. doi: 10.1182/blood-2016-03-705681. Epub 2016 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验