Pokrovskaya Irina D, Yadav Shilpi, Rao Amith, McBride Emma, Kamykowski Jeffrey A, Zhang Guofeng, Aronova Maria A, Leapman Richard D, Storrie Brian
Department of Physiology and Biophysics University of Arkansas for Medical Sciences Little Rock AR USA.
Laboratory of Cellular Imaging and Macromolecular Biophysics NIBIB NIH Bethesda MD USA.
Res Pract Thromb Haemost. 2019 Oct 25;4(1):72-85. doi: 10.1002/rth2.12260. eCollection 2020 Jan.
State-of-the-art 3-dimensional (3D) electron microscopy approaches provide a new standard for the visualization of human platelet ultrastructure. Application of these approaches to platelets rapidly fixed prior to purification to minimize activation should provide new insights into resting platelet ultrastructure.
Our goal was to determine the 3D organization of α-granules, dense granules, mitochondria, and canalicular system in resting human platelets and map their spatial relationships.
We used serial block face-scanning electron microscopy images to render the 3D ultrastructure of α-granules, dense granules, mitochondria, canalicular system, and plasma membrane for 30 human platelets, 10 each from 3 donors. α-Granule compositional data were assessed by sequential, serial section cryo-immunogold electron microscopy and by immunofluorescence (structured illumination microscopy).
α-Granule number correlated linearly with platelet size, while dense granule and mitochondria number had little correlation with platelet size. For all subcellular compartments, individual organelle parameters varied considerably and organelle volume fraction had little correlation with platelet size. Three-dimensional data from 30 platelets indicated only limited spatial intermixing of the different organelle classes. Interestingly, almost 70% of α-granules came within ≤35 nm of each other, a distance associated in other cell systems with protein-mediated contact sites. Size and shape analysis of the 1488 α-granules analyzed revealed no more variation than that expected for a Gaussian distribution. Protein distribution data indicated that all α-granules likely contained the same major set of proteins, albeit at varying amounts and varying distribution within the granule matrix.
先进的三维(3D)电子显微镜技术为人类血小板超微结构的可视化提供了新的标准。将这些技术应用于纯化前快速固定以尽量减少激活的血小板,应能为静息血小板超微结构提供新的见解。
我们的目标是确定静息人类血小板中α颗粒、致密颗粒、线粒体和管道系统的三维组织,并绘制它们的空间关系图。
我们使用连续块面扫描电子显微镜图像来呈现30个人类血小板的α颗粒、致密颗粒、线粒体、管道系统和质膜的三维超微结构,每个供体各10个血小板。通过连续系列切片冷冻免疫金电子显微镜和免疫荧光(结构照明显微镜)评估α颗粒的组成数据。
α颗粒数量与血小板大小呈线性相关,而致密颗粒和线粒体数量与血小板大小几乎没有相关性。对于所有亚细胞区室,单个细胞器参数差异很大,细胞器体积分数与血小板大小几乎没有相关性。来自30个血小板的三维数据表明,不同细胞器类别之间的空间混合有限。有趣的是,几乎70%的α颗粒彼此之间的距离≤35 nm,在其他细胞系统中,这个距离与蛋白质介导的接触位点有关。对1488个α颗粒进行的大小和形状分析显示,其变化不超过高斯分布预期的范围。蛋白质分布数据表明,所有α颗粒可能都含有相同的主要蛋白质组,尽管其含量和在颗粒基质中的分布各不相同。