Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA.
Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA.
Mol Ther. 2020 Apr 8;28(4):1177-1189. doi: 10.1016/j.ymthe.2020.01.005. Epub 2020 Jan 14.
Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.
肌萎缩侧索硬化症(ALS)是一种使人衰弱且致命的疾病,可能由超氧化物歧化酶 1(SOD1)基因突变引起。虽然目前 ALS 无法治愈,但 CRISPR 碱基编辑器通过创造无义突变的能力,有潜力治疗这种疾病,这种无义突变可以永久性地使突变 SOD1 基因失活。然而,腺相关病毒(AAV)载体的携带能力有限,限制了其治疗应用。在本研究中,我们建立了一种内含肽介导的反式剪接系统,该系统可在体内递送由酿脓链球菌来源的广泛使用的 Cas9 蛋白组成的胞嘧啶碱基编辑器(CBE)。我们发现,鞘内注射双 AAV 颗粒编码一个分裂内含肽 CBE,该 CBE 经过工程设计可反式剪接并在突变 SOD1 基因中引入无义编码取代,可延长 G93A-SOD1 肌萎缩侧索硬化症小鼠模型的生存期,并显著减缓疾病进展。与对照小鼠相比,接受这种分裂内含肽 CRISPR 碱基编辑器治疗的成年动物肌肉萎缩率降低,肌肉去神经支配减少,神经肌肉功能改善,终末期小鼠的 SOD1 免疫反应性包涵体减少了 40%。这项工作扩展了单碱基编辑器的功能,并展示了其用于基因治疗的潜力。