Biogen Inc., Cambridge, MA, USA.
Apple Tree Partners (ATP) Research & Development, Branford, CT, USA.
Gene Ther. 2023 May;30(5):443-454. doi: 10.1038/s41434-022-00375-w. Epub 2022 Dec 1.
CRISPR-based gene editing technology represents a promising approach to deliver therapies for inherited disorders, including amyotrophic lateral sclerosis (ALS). Toxic gain-of-function superoxide dismutase 1 (SOD1) mutations are responsible for ~20% of familial ALS cases. Thus, current clinical strategies to treat SOD1-ALS are designed to lower SOD1 levels. Here, we utilized AAV-PHP.B variants to deliver CRISPR-Cas9 guide RNAs designed to disrupt the human SOD1 (huSOD1) transgene in SOD1 mice. A one-time intracerebroventricular injection of AAV.PHP.B-huSOD1-sgRNA into neonatal H11 SOD1 mice caused robust and sustained mutant huSOD1 protein reduction in the cortex and spinal cord, and restored motor function. Neonatal treatment also reduced spinal motor neuron loss, denervation at neuromuscular junction (NMJ) and muscle atrophy, diminished axonal damage and preserved compound muscle action potential throughout the lifespan of treated mice. SOD1 treated mice achieved significant disease-free survival, extending lifespan by more than 110 days. Importantly, a one-time intrathecal or intravenous injection of AAV.PHP.eB-huSOD1-sgRNA in adult H11 SOD1 mice, immediately before symptom onset, also extended lifespan by at least 170 days. We observed substantial protection against disease progression, demonstrating the utility of our CRISPR editing preclinical approach for target evaluation. Our approach uncovered key parameters (e.g., AAV capsid, Cas9 expression) that resulted in improved efficacy compared to similar approaches and can also serve to accelerate drug target validation.
基于 CRISPR 的基因编辑技术为治疗遗传性疾病,包括肌萎缩侧索硬化症(ALS)提供了一种很有前途的方法。有毒的功能获得型超氧化物歧化酶 1(SOD1)突变负责约 20%的家族性 ALS 病例。因此,目前治疗 SOD1-ALS 的临床策略旨在降低 SOD1 水平。在这里,我们利用 AAV-PHP.B 变体来递送设计用于破坏 SOD1 小鼠中人类 SOD1(huSOD1)转基因的 CRISPR-Cas9 向导 RNA。一次向 H11 SOD1 新生小鼠脑室内注射 AAV.PHP.B-huSOD1-sgRNA 可导致皮质和脊髓中突变的 huSOD1 蛋白减少,并恢复运动功能。新生治疗还减少了脊髓运动神经元丢失、神经肌肉接头(NMJ)失神经支配和肌肉萎缩,减少了轴突损伤,并在治疗小鼠的整个寿命内保持复合肌肉动作电位。SOD1 治疗的小鼠实现了显著的无病生存,使寿命延长了 110 多天。重要的是,在 H11 SOD1 成年小鼠症状出现前,一次鞘内或静脉注射 AAV.PHP.eB-huSOD1-sgRNA 也使寿命延长了至少 170 天。我们观察到对疾病进展的实质性保护,证明了我们的 CRISPR 编辑临床前方法在目标评估中的实用性。我们的方法揭示了关键参数(例如,AAV 衣壳、Cas9 表达),与类似方法相比,这些参数可提高疗效,还可以加速药物靶点验证。