Suppr超能文献

基于足部穿戴式惯性行人航位推算系统的行走、慢跑和跑步活动室内轨迹重建。

Indoor Trajectory Reconstruction of Walking, Jogging, and Running Activities Based on a Foot-Mounted Inertial Pedestrian Dead-Reckoning System.

机构信息

Telematics Engineering Research Group, Telematics Department, Universidad Del Cauca (Unicauca), Popayán 190002, Colombia.

Machine Learning and Data Analytics Lab, Computer Science Department, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany.

出版信息

Sensors (Basel). 2020 Jan 24;20(3):651. doi: 10.3390/s20030651.

Abstract

The evaluation of trajectory reconstruction of the human body obtained by foot-mounted Inertial Pedestrian Dead-Reckoning (IPDR) methods has usually been carried out in controlled environments, with very few participants and limited to walking. In this study, a pipeline for trajectory reconstruction using a foot-mounted IPDR system is proposed and evaluated in two large datasets containing activities that involve walking, jogging, and running, as well as movements such as side and backward strides, sitting, and standing. First, stride segmentation is addressed using a multi-subsequence Dynamic Time Warping method. Then, detection of Toe-Off and Mid-Stance is performed by using two new algorithms. Finally, stride length and orientation estimation are performed using a Zero Velocity Update algorithm empowered by a complementary Kalman filter. As a result, the Toe-Off detection algorithm reached an F-score between 90% and 100% for activities that do not involve stopping, and between 71% and 78% otherwise. Resulting return position errors were in the range of 0.5% to 8.8% for non-stopping activities and 8.8% to 27.4% otherwise. The proposed pipeline is able to reconstruct indoor trajectories of people performing activities that involve walking, jogging, running, side and backward walking, sitting, and standing.

摘要

基于足部惯性行人航位推算(IPDR)方法的人体轨迹重建评估通常在受控环境中进行,参与者很少且仅限于步行。在这项研究中,提出并评估了一种使用足部 IPDR 系统的轨迹重建管道,该系统适用于包含步行、慢跑和跑步等活动以及侧步和后步、坐立和站立等运动的两个大型数据集。首先,使用多子序列动态时间规整方法解决步幅分段问题。然后,使用两种新算法检测离地和中间姿态。最后,使用零速度更新算法和互补卡尔曼滤波器来执行步长和方向估计。结果,对于不涉及停止的活动,抬脚检测算法的 F 分数在 90%到 100%之间,否则在 71%到 78%之间。非停止活动的返回位置误差在 0.5%到 8.8%之间,否则在 8.8%到 27.4%之间。所提出的管道能够重建涉及步行、慢跑、跑步、侧步和后步、坐立和站立等活动的人的室内轨迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4302/7038347/0ea524678b06/sensors-20-00651-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验