Suppr超能文献

一种基于金纳米立方体阵列的可调谐三波段近红外超材料吸收器。

A Tunable Triple-Band Near-Infrared Metamaterial Absorber Based on Au Nano-Cuboids Array.

作者信息

Qin Feng, Chen Zeqiang, Chen Xifang, Yi Zao, Yao Weitang, Duan Tao, Wu Pinghui, Yang Hua, Li Gongfa, Yi Yougen

机构信息

Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.

Research Center for Photonic Technology, Fujian Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University, Fujian 362000, China.

出版信息

Nanomaterials (Basel). 2020 Jan 24;10(2):207. doi: 10.3390/nano10020207.

Abstract

In this article, we present a design for a triple-band tunable metamaterial absorber with an Au nano-cuboids array, and undertake numerical research about its optical properties and local electromagnetic field enhancement. The proposed structure is investigated by the finite-difference time domain (FDTD) method, and we find that it has triple-band tunable perfect absorption peaks in the near infrared band (1000-2500 nm). We investigate some of structure parameters that influence the fields of surface plasmons (SP) resonances of the nano array structure. By adjusting the relevant structural parameters, we can accomplish the regulation of the surface plasmons resonance (SPR) peaks. In addition, the triple-band resonant wavelength of the absorber has good operational angle-polarization-tolerance. We believe that the excellent properties of our designed absorber have promising applications in plasma-enhanced photovoltaic, optical absorption switching and infrared modulator optical communication.

摘要

在本文中,我们展示了一种具有金纳米立方体阵列的三频段可调谐超材料吸收体的设计,并对其光学特性和局部电磁场增强进行了数值研究。通过时域有限差分(FDTD)方法对所提出的结构进行了研究,我们发现它在近红外波段(1000 - 2500 nm)具有三频段可调谐的完美吸收峰。我们研究了一些影响纳米阵列结构表面等离子体(SP)共振场的结构参数。通过调整相关结构参数,我们可以实现表面等离子体共振(SPR)峰的调节。此外,该吸收体的三频段共振波长具有良好的工作角度 - 偏振耐受性。我们相信,我们所设计的吸收体的优异特性在等离子体增强光伏、光吸收开关和红外调制器光通信方面具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77d3/7074931/1e1d6ed201bb/nanomaterials-10-00207-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验