Bonanno Silvia, Marcuzzo Stefania, Malacarne Claudia, Giagnorio Eleonora, Masson Riccardo, Zanin Riccardo, Arnoldi Maria Teresa, Andreetta Francesca, Simoncini Ornella, Venerando Anna, Gellera Cinzia, Pantaleoni Chiara, Mantegazza Renato, Bernasconi Pia, Baranello Giovanni, Maggi Lorenzo
Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
PhD Program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
Biomedicines. 2020 Jan 26;8(2):21. doi: 10.3390/biomedicines8020021.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in survival motor neuron (SMN) 1 gene, resulting in a truncated SMN protein responsible for degeneration of brain stem and spinal motor neurons. The paralogous SMN2 gene partially compensates full-length SMN protein production, mitigating the phenotype. Antisense oligonucleotide nusinersen (Spinraza) enhances SMN2 gene expression. SMN is involved in RNA metabolism and biogenesis of microRNA (miRNA), key gene expression modulators, whose dysregulation contributes to neuromuscular diseases. They are stable in body fluids and may reflect distinct pathophysiological states, thus acting as promising biomarkers. Muscle-specific miRNAs (myomiRs) as biomarkers for clinical use in SMA have not been investigated yet. Here, we analyzed the expression of miR-133a, -133b, -206 and -1, in serum of 21 infantile SMA patients at baseline and after 6 months of nusinersen treatment, and correlated molecular data with response to therapy evaluated by the Hammersmith Functional Motor Scale Expanded (HFMSE). Our results demonstrate that myomiR serological levels decrease over disease course upon nusinersen treatment. Notably, miR-133a reduction predicted patients' response to therapy. Our findings identify myomiRs as potential biomarkers to monitor disease progression and therapeutic response in SMA patients.
脊髓性肌萎缩症(SMA)是一种常染色体隐性疾病,由生存运动神经元(SMN)1基因突变引起,导致SMN蛋白截短,进而引起脑干和脊髓运动神经元变性。同源的SMN2基因可部分补偿全长SMN蛋白的产生,减轻疾病表型。反义寡核苷酸诺西那生钠(Spinraza)可增强SMN2基因的表达。SMN参与RNA代谢和微小RNA(miRNA)的生物合成,miRNA是关键的基因表达调节因子,其失调会导致神经肌肉疾病。它们在体液中稳定,可能反映不同的病理生理状态,因此有望成为生物标志物。肌肉特异性miRNA(肌源性miRNA)作为SMA临床应用的生物标志物尚未得到研究。在此,我们分析了21例婴儿型SMA患者在基线时以及接受诺西那生钠治疗6个月后的血清中miR-133a、-133b、-206和-1的表达,并将分子数据与通过哈默史密斯功能运动量表扩展版(HFMSE)评估的治疗反应相关联。我们的结果表明,在诺西那生钠治疗后,肌源性miRNA的血清水平在病程中会下降。值得注意的是,miR-133a的降低可预测患者对治疗的反应。我们的研究结果表明,肌源性miRNA是监测SMA患者疾病进展和治疗反应的潜在生物标志物。