Xie Longjian, Yoneda Akira, Yamazaki Daisuke, Manthilake Geeth, Higo Yuji, Tange Yoshinori, Guignot Nicolas, King Andrew, Scheel Mario, Andrault Denis
Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan.
Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany.
Nat Commun. 2020 Jan 28;11(1):548. doi: 10.1038/s41467-019-14071-8.
Thermochemical heterogeneities detected today in the Earth's mantle could arise from ongoing partial melting in different mantle regions. A major open question, however, is the level of chemical stratification inherited from an early magma-ocean (MO) solidification. Here we show that the MO crystallized homogeneously in the deep mantle, but with chemical fractionation at depths around 1000 km and in the upper mantle. Our arguments are based on accurate measurements of the viscosity of melts with forsterite, enstatite and diopside compositions up to ~30 GPa and more than 3000 K at synchrotron X-ray facilities. Fractional solidification would induce the formation of a bridgmanite-enriched layer at ~1000 km depth. This layer may have resisted to mantle mixing by convection and cause the reported viscosity peak and anomalous dynamic impedance. On the other hand, fractional solidification in the upper mantle would have favored the formation of the first crust.
如今在地球地幔中检测到的热化学不均一性可能源于不同地幔区域正在进行的部分熔融。然而,一个主要的悬而未决的问题是早期岩浆海洋(MO)固化所继承的化学分层程度。在这里,我们表明MO在深部地幔中均匀结晶,但在约1000公里深度和上地幔中存在化学分馏。我们的论点基于在同步加速器X射线设施中对高达约30 GPa和超过3000 K的镁橄榄石、顽火辉石和透辉石成分熔体粘度的精确测量。分离结晶会在约1000公里深度处诱导形成一个富含布里奇曼石的层。该层可能通过对流阻止了地幔混合,并导致了所报道的粘度峰值和异常动态阻抗。另一方面,上地幔中的分离结晶有利于形成最初的地壳。