Shuseki Yuta, Kohara Shinji, Kaneko Tomoaki, Sodeyama Keitaro, Onodera Yohei, Koyama Chihiro, Masuno Atsunobu, Sasaki Shunta, Hatano Shohei, Shiga Motoki, Obayashi Ippei, Hiraoka Yasuaki, Okada Junpei T, Mizuno Akitoshi, Watanabe Yuki, Nakata Yui, Ohara Koji, Murakami Motohiko, Tucker Matthew G, McDonnell Marshall T, Oda Hirohisa, Ishikawa Takehiko
Graduate School of Engineering, Kyoto University, Kyoto 615-8520, Japan.
Center for Basic Research on Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047, Japan.
J Phys Chem A. 2024 Feb 1;128(4):716-726. doi: 10.1021/acs.jpca.3c05561. Epub 2024 Jan 18.
Understanding disordered structure is difficult due to insufficient information in experimental data. Here, we overcome this issue by using a combination of diffraction and simulation to investigate oxygen packing and network topology in glassy (-) and liquid (-) MgO-SiO based on a comparison with the crystalline topology. We find that packing of oxygen atoms in MgSiO is larger than that in MgSiO, and that of the glasses is larger than that of the liquids. Moreover, topological analysis suggests that topological similarity between crystalline ()- and -(-) MgSiO is the signature of low glass-forming ability (GFA), and high GFA -() MgSiO shows a unique glass topology, which is different from MgSiO. We also find that the lowest unoccupied molecular orbital (LUMO) is a free electron-like state at a void site of magnesium atom arising from decreased oxygen coordination, which is far away from crystalline oxides in which LUMO is occupied by oxygen's 3 orbital state in - and -MgO-SiO, suggesting that electronic structure does not play an important role to determine GFA. We finally concluded the GFA of MgO-SiO binary is dominated by the atomic structure in terms of network topology.
由于实验数据中的信息不足,理解无序结构具有一定难度。在此,我们通过结合衍射和模拟方法来克服这一问题,基于与晶体拓扑结构的比较,研究玻璃态(-)和液态(-)MgO-SiO中的氧堆积和网络拓扑结构。我们发现,MgSiO中氧原子的堆积比MgSiO中的更大,且玻璃态中的堆积比液态中的更大。此外,拓扑分析表明,晶体()-和-(-)MgSiO之间的拓扑相似性是低玻璃形成能力(GFA)的特征,而高GFA的-()MgSiO呈现出独特的玻璃拓扑结构,这与MgSiO不同。我们还发现,最低未占据分子轨道(LUMO)是镁原子空位处的类似自由电子的状态,这是由于氧配位减少所致,这与晶体氧化物不同,在晶体氧化物中,LUMO在-和-MgO-SiO中被氧的3轨道态占据,这表明电子结构在决定GFA方面并不起重要作用。我们最终得出结论,就网络拓扑结构而言,MgO-SiO二元体系的GFA由原子结构主导。