Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.
Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada.
Stat Methods Med Res. 2020 Sep;29(9):2507-2519. doi: 10.1177/0962280219900362. Epub 2020 Jan 29.
Constructing causal inference methods to handle longitudinal data in observational studies is of high interest. In an observational setting, treatment assignment at each clinical visit follows a decision strategy where the treating clinician selects treatment based on current and past clinical measurements as well as treatment histories. These time-dependent structures, coupled with inherent correlations between and within each visit, add on to the data complexity. Despite recent interest in Bayesian causal methods, only a limited literature has explored approaches to handle longitudinal data and no method handles repeatedly measured outcomes. In this paper, we extended two Bayesian approaches: Bayesian estimation of marginal structural models and two-stage Bayesian propensity score analysis to handle a repeatedly measured outcome. Our proposed methods permit causal estimation of treatment effects at each visit. Time-dependent inverse probability of treatment weights are obtained from the Markov chain Monte Carlo samples of the posterior treatment assignment model for each follow-up visit. We use a simulation study to validate and compare the proposed methods and illustrate our approaches through a study of intravenous immunoglobulin therapy in treating newly diagnosed juvenile dermatomyositis.
构建因果推断方法来处理观察性研究中的纵向数据是非常有意义的。在观察性研究中,每次临床就诊时的治疗分配都遵循一种决策策略,即治疗医生根据当前和过去的临床测量值以及治疗史来选择治疗方法。这些时变结构,加上每次就诊之间和内部固有的相关性,增加了数据的复杂性。尽管最近对贝叶斯因果方法的兴趣有所增加,但只有有限的文献探讨了处理纵向数据的方法,而且没有方法可以处理重复测量的结果。在本文中,我们扩展了两种贝叶斯方法:贝叶斯边际结构模型估计和两阶段贝叶斯倾向评分分析,以处理重复测量的结果。我们提出的方法允许在每次就诊时对治疗效果进行因果估计。通过对后续每次就诊的后验治疗分配模型的马尔可夫链蒙特卡罗样本,获得了时变的治疗反概率加权。我们使用模拟研究来验证和比较所提出的方法,并通过研究静脉注射免疫球蛋白治疗新诊断的幼年皮肌炎来说明我们的方法。