Suppr超能文献

基于混合结局时间序列观测数据的因果推断的贝叶斯多变量因子分析模型。

A Bayesian multivariate factor analysis model for causal inference using time-series observational data on mixed outcomes.

机构信息

MRC Biostatistics Unit, East Forvie Building, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK.

UK Health Security Agency, London, E14 4PU, UK.

出版信息

Biostatistics. 2024 Jul 1;25(3):867-884. doi: 10.1093/biostatistics/kxad030.

Abstract

Assessing the impact of an intervention by using time-series observational data on multiple units and outcomes is a frequent problem in many fields of scientific research. Here, we propose a novel Bayesian multivariate factor analysis model for estimating intervention effects in such settings and develop an efficient Markov chain Monte Carlo algorithm to sample from the high-dimensional and nontractable posterior of interest. The proposed method is one of the few that can simultaneously deal with outcomes of mixed type (continuous, binomial, count), increase efficiency in the estimates of the causal effects by jointly modeling multiple outcomes affected by the intervention, and easily provide uncertainty quantification for all causal estimands of interest. Using the proposed approach, we evaluate the impact that Local Tracing Partnerships had on the effectiveness of England's Test and Trace programme for COVID-19.

摘要

使用关于多个单位和结果的时间序列观测数据评估干预措施的影响,是许多科学研究领域中的一个常见问题。在这里,我们提出了一种新的贝叶斯多变量因子分析模型,用于估计此类环境下的干预效果,并开发了一种有效的马尔可夫链蒙特卡罗算法,以便从感兴趣的高维不可处理后验中抽样。该方法是少数几种能够同时处理混合类型(连续、二项式、计数)结果的方法之一,通过联合建模受干预影响的多个结果,可以提高因果效应估计的效率,并可以轻松地为所有感兴趣的因果估计值提供不确定性量化。使用所提出的方法,我们评估了 Local Tracing Partnerships 对英格兰 COVID-19 的 Test and Trace 计划效果的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/601f/11247182/4c629769f9b1/kxad030f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验