MRC Biostatistics Unit, East Forvie Building, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK.
UK Health Security Agency, London, E14 4PU, UK.
Biostatistics. 2024 Jul 1;25(3):867-884. doi: 10.1093/biostatistics/kxad030.
Assessing the impact of an intervention by using time-series observational data on multiple units and outcomes is a frequent problem in many fields of scientific research. Here, we propose a novel Bayesian multivariate factor analysis model for estimating intervention effects in such settings and develop an efficient Markov chain Monte Carlo algorithm to sample from the high-dimensional and nontractable posterior of interest. The proposed method is one of the few that can simultaneously deal with outcomes of mixed type (continuous, binomial, count), increase efficiency in the estimates of the causal effects by jointly modeling multiple outcomes affected by the intervention, and easily provide uncertainty quantification for all causal estimands of interest. Using the proposed approach, we evaluate the impact that Local Tracing Partnerships had on the effectiveness of England's Test and Trace programme for COVID-19.
使用关于多个单位和结果的时间序列观测数据评估干预措施的影响,是许多科学研究领域中的一个常见问题。在这里,我们提出了一种新的贝叶斯多变量因子分析模型,用于估计此类环境下的干预效果,并开发了一种有效的马尔可夫链蒙特卡罗算法,以便从感兴趣的高维不可处理后验中抽样。该方法是少数几种能够同时处理混合类型(连续、二项式、计数)结果的方法之一,通过联合建模受干预影响的多个结果,可以提高因果效应估计的效率,并可以轻松地为所有感兴趣的因果估计值提供不确定性量化。使用所提出的方法,我们评估了 Local Tracing Partnerships 对英格兰 COVID-19 的 Test and Trace 计划效果的影响。