Bai Xiaojing, Zha Xian-Hu, Qiao Yingjie, Qiu Nianxiang, Zhang Yiming, Luo Kan, He Jian, Li Qiuwu, Huang Qing, Francisco Joseph S, Lin Cheng-Te, Du Shiyu
College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China.
Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055, China.
Nanoscale. 2020 Feb 14;12(6):3795-3802. doi: 10.1039/c9nr10806h. Epub 2020 Jan 29.
As a new family of two-dimensional materials, MXenes have attracted increasing attention in recent years due to their widespread potential applications. In contrast to early transition metals in convention, here we expand the M element of MXene to the rare earth element lutetium. Based on the first-principles density functional calculations, the bare lutetium-based carbide MXene LuC is determined to be stabilized in the T-type configuration. Furthermore, both fluorine and hydroxyl terminated configurations are found to be semiconductors, and their band gaps are suitable for use in semiconductors and visible and near-infrared optical devices. The LuC(OH) configuration shows a direct band gap and possesses an ultralow work function of 1.4 eV. Both LuCT (T = F, OH) MXenes exhibit high carrier mobilities. Particularly, the electron mobility of the LuC(OH) MXene is found to be anisotropic at room temperature, with values as high as 95.19 × 10 and 217.1 × 10 cm V·s in the zigzag and armchair directions, respectively, which makes LuC(OH) a promising material for nanodevices. Based on these predicted properties, our work widens the range of MXene materials and their applications in semiconducting devices.
作为二维材料的一个新家族,MXenes近年来因其广泛的潜在应用而受到越来越多的关注。与传统的早期过渡金属不同,在这里我们将MXene的M元素扩展到稀土元素镥。基于第一性原理密度泛函计算,确定裸露的镥基碳化物MXene LuC以T型构型稳定。此外,发现氟和羟基封端的构型均为半导体,其带隙适用于半导体以及可见光和近红外光电器件。LuC(OH)构型显示出直接带隙,并具有1.4 eV的超低功函数。两种LuCT(T = F,OH)MXenes都表现出高载流子迁移率。特别地,发现LuC(OH) MXene在室温下的电子迁移率是各向异性的,在锯齿形和扶手椅形方向上的值分别高达95.19×10和217.1×10 cm² V⁻¹·s⁻¹,这使得LuC(OH)成为纳米器件的一种有前途的材料。基于这些预测特性,我们的工作拓宽了MXene材料的范围及其在半导体器件中的应用。