Suppr超能文献

非周期超晶格中的热输运猝灭:分子动力学与机器学习研究

Quenching Thermal Transport in Aperiodic Superlattices: A Molecular Dynamics and Machine Learning Study.

作者信息

Chakraborty Pranay, Liu Yida, Ma Tengfei, Guo Xixi, Cao Lei, Hu Run, Wang Yan

机构信息

Department of Mechanical Engineering , University of Nevada, Reno , Reno , Nevada 89557 , United States.

School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8795-8804. doi: 10.1021/acsami.9b18084. Epub 2020 Feb 10.

Abstract

Random multilayer (RML) structures, or aperiodic superlattices, can localize coherent phonons and therefore exhibit drastically reduced lattice thermal conductivity compared to their superlattice counterparts. The optimization of RML structures is essential for obtaining ultralow thermal conductivity, which is critical for various applications such as thermoelectrics and thermal barrier coatings. A higher degree of disorder in RMLs will lead to stronger phonon localization and, correspondingly, a lower lattice thermal conductivity. In this work, we identified several essential parameters for quantifying the disorder in layer thicknesses of RMLs. We were able to correlate these disorder parameters with thermal conductivity, as confirmed by classical molecular dynamics simulations of conceptual Lennard-Jones RMLs. Moreover, we have shown that these parameters are effective as features for physics-based machine learning models to predict the lattice thermal conductivity of RMLs with improved accuracy and efficiency.

摘要

随机多层(RML)结构,即非周期超晶格,能够使相干声子局域化,因此与它们的超晶格对应物相比,其晶格热导率显著降低。RML结构的优化对于获得超低热导率至关重要,这对于热电学和热障涂层等各种应用至关重要。RML中更高程度的无序将导致更强的声子局域化,相应地,晶格热导率更低。在这项工作中,我们确定了几个用于量化RML层厚度无序的关键参数。正如对概念性 Lennard-Jones RML进行的经典分子动力学模拟所证实的那样,我们能够将这些无序参数与热导率相关联。此外,我们已经表明,这些参数作为基于物理的机器学习模型的特征是有效的,能够以更高的准确性和效率预测RML的晶格热导率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验