Chakraborty Pranay, Chiu Isaac Armstrong, Ma Tengfei, Wang Yan
Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV 89557, United States of America.
Nanotechnology. 2021 Feb 5;32(6):065401. doi: 10.1088/1361-6528/abc2ef.
Currently, it is still unclear how and to what extent a change in temperature impacts the relative contributions of coherent and incoherent phonons to thermal transport in superlattices. Some seemingly conflicting computational and experimental observations of the temperature dependence of lattice thermal conductivity make the coherent-incoherent thermal transport behaviors in superlattices even more elusive. In this work, we demonstrate that incoherent phonon contribution to thermal transport in superlattices increases as the temperature increases due to elevated inelastic interfacial transmission. On the other hand, the coherent phonon contribution decreases at higher temperatures due to elevated anharmonic scattering. The competition between these two conflicting mechanisms can lead to different trends of lattice thermal conductivity as temperature increases, i.e. increasing, decreasing, or non-monotonic. Finally, we demonstrate that the neural network-based machine learning model can well capture the coherent-incoherent transition of lattice thermal transport in the superlattice, which can greatly aid the understanding and optimization of thermal transport properties of superlattices.
目前,温度变化如何以及在多大程度上影响超晶格中相干声子和非相干声子对热输运的相对贡献仍不清楚。一些关于晶格热导率温度依赖性的看似相互矛盾的计算和实验观察结果,使得超晶格中的相干-非相干热输运行为更加难以捉摸。在这项工作中,我们证明,由于非弹性界面透射率升高,超晶格中非相干声子对热输运的贡献随着温度升高而增加。另一方面,由于非谐散射增强,相干声子的贡献在较高温度下降低。这两种相互矛盾的机制之间的竞争会导致晶格热导率随温度升高呈现不同的趋势,即增加、降低或非单调变化。最后,我们证明基于神经网络的机器学习模型能够很好地捕捉超晶格中晶格热输运的相干-非相干转变,这将极大地有助于理解和优化超晶格的热输运性质。