Suppr超能文献

Elucidating Molecular Interactions of Ten Natural Compounds Targeting E6 HPV High Risk Oncoproteins Using Microsecond Molecular Dynamics Simulations.

作者信息

Meza-Menchaca Thuluz, Lizano-Soberón Marcela, Trigos Angel, Zepeda Rossana C, Medina Manuel E, Galindo-Murillo Rodrigo

机构信息

Facultad de Medicina, Laboratorio de Genomica Humana, Universidad Veracruzana. Medicos y Odontologos, Col. Unidad del Bosque, 91010, Xalapa, Veracruz, Mexico.

Unidad de Investigacion Biomedica en Cáncer, Instituto Nacional de Cancerologia-Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, 14080, Ciudad de Mexico, Mexico.

出版信息

Med Chem. 2021;17(6):587-600. doi: 10.2174/1573406416666200129145733.

Abstract

BACKGROUND

Cervical cancer is a major public health issue worldwide, occurring in the vast majority of cases (85%) in low-income countries. Human papillomavirus (HPV) mainly infects the mucosal epithelium, and a small portion causes over 600,000 cases every year worldwide at various anatomical spots, mainly leading to anogenital and head and neck.

INTRODUCTION

The E6 oncoprotein encoded by cancer-associated alpha HPV can transform epithelial cells into tumorigenic tissue. Therapy for this infection and blocking of the HPV E6 oncoprotein could be provided with cost-effective and abundant natural products which are an exponentially growing topic in the literature. Finding an active natural compound that readily blocks HPV E6 oncoprotein which could be available for developing countries without expensive extraction processes or costly synthetic pathways is of major interest.

METHODS

Molecular dynamics simulation was performed using the most up-to-date AMBER protein force field ff14SB and a GPU enabled high performance computing cluster.

RESULTS

In this research, we present a study of the binding properties between 10 selected natural compounds that are readily available with two variants of the E6 oncoprotein types (HPV-16 and HPV-18) using 10+ microsecond molecular dynamics simulations.

CONCLUSION

Our results suggest that crocetin, ergosterol peroxide and κ-carrageenan natural products bind strongly to both HPV-16 and HPV-18 and could potentially serve as a scaffolding for further drug development.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验