Suppr超能文献

Elucidating Molecular Interactions of Ten Natural Compounds Targeting E6 HPV High Risk Oncoproteins Using Microsecond Molecular Dynamics Simulations.

作者信息

Meza-Menchaca Thuluz, Lizano-Soberón Marcela, Trigos Angel, Zepeda Rossana C, Medina Manuel E, Galindo-Murillo Rodrigo

机构信息

Facultad de Medicina, Laboratorio de Genomica Humana, Universidad Veracruzana. Medicos y Odontologos, Col. Unidad del Bosque, 91010, Xalapa, Veracruz, Mexico.

Unidad de Investigacion Biomedica en Cáncer, Instituto Nacional de Cancerologia-Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, 14080, Ciudad de Mexico, Mexico.

出版信息

Med Chem. 2021;17(6):587-600. doi: 10.2174/1573406416666200129145733.

Abstract

BACKGROUND

Cervical cancer is a major public health issue worldwide, occurring in the vast majority of cases (85%) in low-income countries. Human papillomavirus (HPV) mainly infects the mucosal epithelium, and a small portion causes over 600,000 cases every year worldwide at various anatomical spots, mainly leading to anogenital and head and neck.

INTRODUCTION

The E6 oncoprotein encoded by cancer-associated alpha HPV can transform epithelial cells into tumorigenic tissue. Therapy for this infection and blocking of the HPV E6 oncoprotein could be provided with cost-effective and abundant natural products which are an exponentially growing topic in the literature. Finding an active natural compound that readily blocks HPV E6 oncoprotein which could be available for developing countries without expensive extraction processes or costly synthetic pathways is of major interest.

METHODS

Molecular dynamics simulation was performed using the most up-to-date AMBER protein force field ff14SB and a GPU enabled high performance computing cluster.

RESULTS

In this research, we present a study of the binding properties between 10 selected natural compounds that are readily available with two variants of the E6 oncoprotein types (HPV-16 and HPV-18) using 10+ microsecond molecular dynamics simulations.

CONCLUSION

Our results suggest that crocetin, ergosterol peroxide and κ-carrageenan natural products bind strongly to both HPV-16 and HPV-18 and could potentially serve as a scaffolding for further drug development.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验