Suppr超能文献

用于全参考图像质量评估的动态感受野生成

Dynamic Receptive Field Generation for Full-Reference Image Quality Assessment.

作者信息

Kim Woojae, Nguyen Anh-Duc, Lee Sanghoon, Bovik Alan Conrad

出版信息

IEEE Trans Image Process. 2020 Jan 27. doi: 10.1109/TIP.2020.2968283.

Abstract

Most full-reference image quality assessment (FR-IQA) methods advanced to date have been holistically designed without regard to the type of distortion impairing the image. However, the perception of distortion depends nonlinearly on the distortion type. Here we propose a novel FR-IQA framework that dynamically generates receptive fields responsive to distortion type. Our proposed method-dynamic receptive field generation based image quality assessor (DRF-IQA)-separates the process of FR-IQA into two streams: 1) dynamic error representation and 2) visual sensitivity-based quality pooling. The first stream generates dynamic receptive fields on the input distorted image, implemented by a trained convolutional neural network (CNN), then the generated receptive field profiles are convolved with the distorted and reference images, and differenced to produce spatial error maps. In the second stream, a visual sensitivity map is generated. The visual sensitivity map is used to weight the spatial error map. The experimental results show that the proposed model achieves state-of-the-art prediction accuracy on various open IQA databases.

摘要

迄今为止,大多数先进的全参考图像质量评估(FR-IQA)方法都是整体设计的,并未考虑损害图像的失真类型。然而,对失真的感知非线性地取决于失真类型。在此,我们提出了一种新颖的FR-IQA框架,该框架可动态生成对失真类型有响应的感受野。我们提出的方法——基于动态感受野生成的图像质量评估器(DRF-IQA)——将FR-IQA过程分为两个流:1)动态误差表示和2)基于视觉敏感度的质量池化。第一个流在输入的失真图像上生成动态感受野,由经过训练的卷积神经网络(CNN)实现,然后将生成的感受野轮廓与失真图像和参考图像进行卷积,并求差以生成空间误差图。在第二个流中,生成视觉敏感度图。视觉敏感度图用于对空间误差图进行加权。实验结果表明,所提出的模型在各种开放的IQA数据库上实现了当前最优的预测精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验