IEEE Trans Image Process. 2016 Nov;25(11):5118-5130. doi: 10.1109/TIP.2016.2601783. Epub 2016 Aug 19.
Image quality assessment (IQA) is traditionally classified into full-reference (FR) IQA, reduced-reference (RR) IQA, and no-reference (NR) IQA according to the amount of information required from the original image. Although NR-IQA and RR-IQA are widely used in practical applications, room for improvement still remains because of the lack of the reference image. Inspired by the fact that in many applications, such as parameter selection for image restoration algorithms, a series of distorted images are available, the authors propose a novel comparison-based IQA (C-IQA) framework. The new comparison-based framework parallels FR-IQA by requiring two input images and resembles NR-IQA by not using the original image. As a result, the new comparison-based approach has more application scenarios than FR-IQA does, and takes greater advantage of the accessible information than the traditional single-input NR-IQA does. Further, C-IQA is compared with other state-of-the-art NR-IQA methods and another RR-IQA method on two widely used IQA databases. Experimental results show that C-IQA outperforms the other methods for parameter selection, and the parameter trimming framework combined with C-IQA saves the computation of iterative image reconstruction up to 80%.
图像质量评估(IQA)通常根据原始图像所需的信息量分为全参考(FR)IQA、部分参考(RR)IQA 和无参考(NR)IQA。尽管 NR-IQA 和 RR-IQA 在实际应用中得到了广泛应用,但由于缺乏参考图像,仍有改进的空间。受这样一个事实的启发,即在许多应用中,例如图像恢复算法的参数选择,会提供一系列失真图像,作者提出了一种新的基于比较的 IQA(C-IQA)框架。新的基于比较的框架通过需要两个输入图像来与 FR-IQA 平行,并且类似于 NR-IQA 而不使用原始图像。因此,与 FR-IQA 相比,新的基于比较的方法具有更多的应用场景,并且比传统的单输入 NR-IQA 更充分地利用了可访问的信息。此外,在两个广泛使用的 IQA 数据库上,将 C-IQA 与其他最先进的 NR-IQA 方法和另一种 RR-IQA 方法进行了比较。实验结果表明,C-IQA 在参数选择方面优于其他方法,并且与 C-IQA 结合的参数修剪框架节省了迭代图像重建的计算量高达 80%。