Guan Xiaodi, He Lijun, Li Mengyue, Li Fan
School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Guangdong Xi'an Jiaotong University Academy, Foshan 528300, China.
Entropy (Basel). 2019 Dec 31;22(1):60. doi: 10.3390/e22010060.
Image quality assessment (IQA) is a fundamental technology for image applications that can help correct low-quality images during the capture process. The ability to expand distorted images and create human visual system (HVS)-aware labels for training is the key to performing IQA tasks using deep neural networks (DNNs), and image quality is highly sensitive to changes in entropy. Therefore, a new data expansion method based on entropy and guided by saliency and distortion is proposed in this paper. We introduce saliency into a large-scale expansion strategy for the first time. We regionally add distortion to a set of original images to obtain a distorted image database and label the distorted images using entropy. The careful design of the distorted images and the entropy-based labels fully reflects the influences of both saliency and distortion on quality. The expanded database plays an important role in the application of a DNN for IQA. Experimental results on IQA databases demonstrate the effectiveness of the expansion method, and the network's prediction effect on the IQA databases is found to be improved compared with its predecessor algorithm. Therefore, we conclude that a data expansion approach that fully reflects HVS-aware quality factors is beneficial for IQA. This study presents a novel method for incorporating saliency into IQA, namely, representing it as regional distortion.
图像质量评估(IQA)是图像应用中的一项基础技术,它能够在图像采集过程中帮助校正低质量图像。利用深度神经网络(DNN)执行IQA任务的关键在于能够扩展失真图像并创建用于训练的符合人类视觉系统(HVS)感知的标签,并且图像质量对熵的变化高度敏感。因此,本文提出了一种基于熵并由显著性和失真引导的新数据扩展方法。我们首次将显著性引入大规模扩展策略。我们对一组原始图像进行局部添加失真操作以获得失真图像数据库,并使用熵对失真图像进行标注。精心设计的失真图像和基于熵的标签充分反映了显著性和失真对质量的影响。扩展后的数据库在用于IQA的DNN应用中发挥着重要作用。在IQA数据库上的实验结果证明了该扩展方法的有效性,并且发现该网络对IQA数据库的预测效果相较于其先前算法有所提升。因此,我们得出结论,一种充分反映符合HVS感知的质量因素的数据扩展方法对IQA是有益的。本研究提出了一种将显著性纳入IQA的新方法,即将其表示为局部失真。