Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK.
J Neuroendocrinol. 2014 Jan;26(1):2-10. doi: 10.1111/jne.12125.
The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian pacemaker of the brain. It co-ordinates the daily rhythms of sleep and wakefulness, as well as physiology and behaviour, that set the tempo to our lives. Disturbance of this daily pattern, most acutely with jet-lag but more insidiously with rotational shift-work, can have severely deleterious effects for mental function and long-term health. The present review considers recent developments in our understanding of the properties of the SCN that make it a robust circadian time-keeper. It first focuses on the intracellular transcriptional/ translational feedback loops (TTFL) that constitute the cellular clockwork of the SCN neurone. Daily timing by these loops pivots around the negative regulation of the Period (Per) and Cryptochrome (Cry) genes by their protein products. The period of the circadian cycle is set by the relative stability of Per and Cry proteins, and this can be controlled by both genetic and pharmacological interventions. It then considers the function of these feedback loops in the context of cytosolic signalling by cAMP and intracellular calcium ([Ca(2+) ]i ), which are both outputs from, and inputs to, the TTFL, as well as the critical role of vasoactive intestinal peptide (VIP) signalling in synchronising cellular clocks across the SCN. Synchronisation by VIP in the SCN is paracrine, operating over an unconventionally long time frame (i.e. 24 h) and wide spatial domain, mediated via the cytosolic pathways upstream of the TTFL. Finally, we show how intersectional pharmacogenetics can be used to control G-protein-coupled signalling in individual SCN neurones, and how manipulation of Gq/[Ca(2+) ]i -signalling in VIP neurones can re-programme the circuit-level encoding of circadian time. Circadian pacemaking in the SCN therefore provides an unrivalled context in which to understand how a complex, adaptive behaviour can be organised by the dynamic activity of a relatively few gene products, operating in a clearly defined neuronal circuit, with both cell-autonomous and emergent, circuit-level properties.
视交叉上核(SCN)是大脑的主要生物钟。它协调睡眠和觉醒的日常节律,以及生理学和行为,为我们的生活设定节奏。这种日常模式的干扰,最明显的是时差,但更隐蔽的是轮班工作,会对精神功能和长期健康产生严重的有害影响。本综述考虑了我们对 SCN 特性的最新理解,这些特性使其成为一个强大的生物钟。它首先关注构成 SCN 神经元细胞钟的细胞内转录/翻译反馈环(TTFL)。这些环的每日定时以其蛋白质产物对 Period(Per)和 Cryptochrome(Cry)基因的负调节为中心。生物钟周期的设定取决于 Per 和 Cry 蛋白的相对稳定性,这可以通过遗传和药理学干预来控制。然后,它考虑了这些反馈环在细胞溶质信号传导的背景下的功能,细胞溶质信号传导由环磷酸腺苷(cAMP)和细胞内钙([Ca(2+)]i)输出,这两者都是 TTFL 的输入,以及血管活性肠肽(VIP)信号在同步 SCN 细胞钟中的关键作用。VIP 在 SCN 中的同步是旁分泌的,作用于不寻常的长时间框架(即 24 小时)和广泛的空间域,通过 TTFL 上游的细胞质途径介导。最后,我们展示了如何使用交叉药理学遗传学来控制单个 SCN 神经元中的 G 蛋白偶联信号传导,以及如何操纵 VIP 神经元中的 Gq/[Ca(2+)]i 信号传导可以重新编程生物钟的电路级编码。因此,SCN 的生物钟提供了一个无与伦比的背景,了解复杂的适应性行为如何通过相对较少的基因产物的动态活动来组织,这些基因产物在一个明确定义的神经元电路中运行,具有细胞自主和涌现的电路级特性。