Suppr超能文献

双顺反子基因钼辅酶合成 1()的可变剪接揭示了一种新的线粒体蛋白成熟机制。

Alternative splicing of the bicistronic gene molybdenum cofactor synthesis 1 () uncovers a novel mitochondrial protein maturation mechanism.

机构信息

Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany.

Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany; Center for Molecular Medicine, University of Cologne, 5931 Cologne, Germany.

出版信息

J Biol Chem. 2020 Mar 6;295(10):3029-3039. doi: 10.1074/jbc.RA119.010720. Epub 2020 Jan 29.

Abstract

Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (). Alternative splicing of within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I-III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, , is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.

摘要

钼辅因子(Moco)生物合成是一个高度保守的多步骤途径。第一步,将 GTP 转化为环吡喃并单磷酸(cPMP),需要双顺反子基因钼辅因子合成 1()。在exon1 和 9 内的选择性剪接产生了四种不同的 N 端和三种不同的 C 端产物(类型 I-III)。I 型剪接导致具有两个开放阅读框的双顺反子转录物,其中只有第一个, ,被翻译,而 II/III 型剪接产生 MOCS1AB 蛋白。在这里,我们首先报告了人 MOCS1 蛋白的选择性剪接的细胞定位。通过荧光显微镜、荧光光谱和细胞分级实验,我们发现根据 exon1 的选择性剪接,I 型剪接变体(MOCS1A)要么定位于线粒体基质(exon1a),要么保持细胞质(exon1b)。MOCS1A 蛋白需要 exon1a 进行线粒体易位,但 MOCS1AB 变体(类型 II 和 III)的荧光显微镜显示,它们独立于 exon1 剪接靶向线粒体。在后一种情况下,细胞分级实验显示,线粒体基质导入通过内部基序来促进,该基序覆盖了 N 端靶向信号。在线粒体中,MOCS1AB 经历蛋白水解切割,导致 MOCS1B 结构域定位于线粒体基质。总之, 产生两种功能性蛋白,MOCS1A 和 MOCS1B,它们在进行线粒体基质导入以参与 cPMP 生物合成之前,遵循不同的易位途径。MOCS1 蛋白成熟提供了一种新的选择性剪接机制,确保了由单个基因编码的两种功能相关蛋白的协调线粒体靶向。

相似文献

引用本文的文献

4
Molybdenum Cofactor Deficiency in Humans.钼辅因子缺陷症。
Molecules. 2022 Oct 14;27(20):6896. doi: 10.3390/molecules27206896.
5
Prime Real Estate: Metals, Cofactors and MICOS.黄金地段:金属、辅助因子与线粒体接触位点及嵴组织系统
Front Cell Dev Biol. 2022 May 20;10:892325. doi: 10.3389/fcell.2022.892325. eCollection 2022.

本文引用的文献

4
Mitochondrial protein transport in health and disease.线粒体蛋白在健康和疾病中的转运。
Semin Cell Dev Biol. 2018 Apr;76:142-153. doi: 10.1016/j.semcdb.2017.07.028. Epub 2017 Jul 29.
7
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis.钼辅因子生物合成中吡喃蝶呤环形成的机制。
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6347-52. doi: 10.1073/pnas.1500697112. Epub 2015 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验