Suppr超能文献

酿酒酵母:研究人类肾脏阴离子交换器 1 的功能和细胞内运输的合适模型系统的初探。

Saccharomyces cerevisiae: First Steps to a Suitable Model System To Study the Function and Intracellular Transport of Human Kidney Anion Exchanger 1.

机构信息

Molecular and Cell Biology, Department of Biosciences (FR 8.3) and Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.

Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany.

出版信息

mSphere. 2020 Jan 29;5(1):e00802-19. doi: 10.1128/mSphere.00802-19.

Abstract

has been frequently used to study biogenesis, functionality, and intracellular transport of various renal proteins, including ion channels, solute transporters, and aquaporins. Specific mutations in genes encoding most of these renal proteins affect kidney function in such a way that various disease phenotypes ultimately occur. In this context, human kidney anion exchanger 1 (kAE1) represents an important bicarbonate/chloride exchanger which maintains the acid-base homeostasis in the human body. Malfunctions in kAE1 lead to a pathological phenotype known as distal renal tubular acidosis (dRTA). Here, we evaluated the potential of baker's yeast as a model system to investigate different cellular aspects of kAE1 physiology. For the first time, we successfully expressed yeast codon-optimized full-length versions of tagged and untagged wild-type kAE1 and demonstrated their partial localization at the yeast plasma membrane (PM). Finally, pH and chloride measurements further suggest biological activity of full-length kAE1, emphasizing the potential of as a model system for studying trafficking, activity, and/or degradation of mammalian ion channels and transporters such as kAE1 in the future. Distal renal tubular acidosis (dRTA) is a common kidney dysfunction characterized by impaired acid secretion via urine. Previous studies revealed that α-intercalated cells of dRTA patients express mutated forms of human kidney anion exchanger 1 (kAE1) which result in inefficient plasma membrane targeting or diminished expression levels of kAE1. However, the precise dRTA-causing processes are inadequately understood, and alternative model systems are helpful tools to address kAE1-related questions in a fast and inexpensive way. In contrast to a previous study, we successfully expressed full-length kAE1 in Using advanced microscopy techniques as well as different biochemical and functionality assays, plasma membrane localization and biological activity were confirmed for the heterologously expressed anion transporter. These findings represent first important steps to use the potential of yeast as a model organism for studying trafficking, activity, and degradation of kAE1 and its mutant variants in the future.

摘要

已经被频繁用于研究各种肾脏蛋白的生物发生、功能和细胞内运输,包括离子通道、溶质转运体和水通道蛋白。编码这些肾脏蛋白的大多数基因的特定突变以这样一种方式影响肾脏功能,即最终出现各种疾病表型。在这种情况下,人肾脏阴离子交换器 1 (kAE1) 代表一种重要的碳酸氢盐/氯离子交换器,它维持着人体的酸碱平衡。kAE1 的功能障碍导致一种称为远端肾小管酸中毒 (dRTA) 的病理表型。在这里,我们评估了面包酵母作为一种模型系统来研究 kAE1 生理学不同细胞方面的潜力。我们首次成功表达了酵母密码子优化的全长标记和未标记野生型 kAE1,并证明它们部分定位于酵母质膜 (PM)。最后,pH 和氯离子测量进一步表明全长 kAE1 的生物学活性,强调了作为研究哺乳动物离子通道和转运体(如 kAE1)的运输、活性和/或降解的未来模型系统的潜力。远端肾小管酸中毒 (dRTA) 是一种常见的肾脏功能障碍,其特征是尿液中酸分泌受损。先前的研究表明,dRTA 患者的α闰细胞表达人肾脏阴离子交换器 1 (kAE1) 的突变形式,导致其质膜靶向效率降低或 kAE1 的表达水平降低。然而,确切的 dRTA 致病过程尚未得到充分理解,替代模型系统是快速且廉价地解决与 kAE1 相关问题的有用工具。与之前的一项研究不同,我们成功地在酵母中表达了全长 kAE1。使用先进的显微镜技术以及不同的生化和功能测定,证实了异源表达的阴离子转运体在质膜上的定位和生物学活性。这些发现代表了将来使用酵母作为模型生物来研究 kAE1 及其突变体的运输、活性和降解的潜在用途的重要的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a787/6992373/ec6df14805be/mSphere.00802-19-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验