Molecular and Cell Biology, Department of Biosciences and Centre of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.
Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada.
Yeast. 2021 Sep;38(9):521-534. doi: 10.1002/yea.3652. Epub 2021 May 28.
Human kidney anion exchanger 1 (kAE1) facilitates simultaneous efflux of bicarbonate and absorption of chloride at the basolateral membrane of α-intercalated cells. In these cells, kAE1 contributes to systemic acid-base balance along with the proton pump v-H -ATPase and the cytosolic carbonic anhydrase II. Recent electron microscopy analyses in yeast demonstrate that heterologous expression of several kAE1 variants causes a massive accumulation of the anion transporter in intracellular membrane structures. Here, we examined the origin of these kAE1 aggregations in more detail. Using various biochemical techniques and advanced light and electron microscopy, we showed that accumulation of kAE1 mainly occurs in endoplasmic reticulum (ER) membranes which eventually leads to strong unfolded protein response (UPR) activation and severe growth defect in kAE1 expressing yeast cells. Furthermore, our data indicate that UPR activation is dose dependent and uncoupled from the bicarbonate transport activity. By using truncated kAE1 variants, we identified the C-terminal region of kAE1 as crucial factor for the increased ER stress level. Finally, a redistribution of ER-localized kAE1 to the cell periphery was achieved by boosting the ER folding capacity. Our findings not only demonstrate a promising strategy for preventing intracellular kAE1 accumulation and improving kAE1 plasma membrane targeting but also highlight the versatility of yeast as model to investigate kAE1-related research questions including the analysis of structural features, protein degradation and trafficking. Furthermore, our approach might be a promising strategy for future analyses to further optimize the cell surface targeting of other disease-related PM proteins, not only in yeast but also in mammalian cells.
人肾脏阴离子交换器 1(kAE1)在α闰细胞的基底外侧膜促进碳酸氢盐的同时外排和氯离子的吸收。在这些细胞中,kAE1 与质子泵 v-H+-ATPase 和细胞质碳酸酐酶 II 一起有助于全身酸碱平衡。酵母的最近电子显微镜分析表明,几种 kAE1 变体的异源表达导致阴离子转运体在细胞内膜结构中的大量积累。在这里,我们更详细地研究了这些 kAE1 聚集的起源。使用各种生化技术和先进的光和电子显微镜,我们表明 kAE1 的积累主要发生在内质网(ER)膜中,这最终导致强烈的未折叠蛋白反应(UPR)激活和 kAE1 表达酵母细胞的严重生长缺陷。此外,我们的数据表明 UPR 激活是剂量依赖性的,并且与碳酸氢盐转运活性无关。通过使用截断的 kAE1 变体,我们确定了 kAE1 的 C 末端区域是增加 ER 应激水平的关键因素。最后,通过增强 ER 折叠能力,将 ER 定位的 kAE1 重新分布到细胞外围。我们的发现不仅证明了防止细胞内 kAE1 积累和改善 kAE1 质膜靶向的有前途的策略,而且还强调了酵母作为模型的多功能性,可用于研究与 kAE1 相关的研究问题,包括分析结构特征、蛋白降解和运输。此外,我们的方法可能是未来分析的有前途的策略,以进一步优化其他与疾病相关的 PM 蛋白的细胞表面靶向,不仅在酵母中,而且在哺乳动物细胞中也是如此。