Center for High Pressure Science and Technology Advanced Research, Beijing, China.
High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL, USA.
Nature. 2019 Sep;573(7775):558-562. doi: 10.1038/s41586-019-1565-9. Epub 2019 Sep 25.
High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate. Therefore, understanding such transitions remains an important objective in condensed matter physics. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close-packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.
高压相变被认为会将氢分子转化为分子金属固体,最终转化为原子金属,这种原子金属预计具有奇特的物理性质和由电子和质子组成的双组份超导超流凝聚体的拓扑结构。因此,理解这种转变仍然是凝聚态物理中的一个重要目标。然而,由于在极端条件下进行 X 射线和中子衍射测量存在相当大的技术挑战,大多数高压相的固体氢晶体结构测量都缺乏,而这对于提供关于氢在压缩下金属化的关键信息至关重要。在这里,我们展示了在高达 254 千兆帕斯卡的压力下对固体氢的单晶 X 射线衍射研究,揭示了从相 I 到相 III 和相 IV 的转变的晶体学性质。在压缩过程中,氢分子仍然保持在六方密堆积(hcp)晶格结构中,同时各向异性单调增加。此外,当进入相 IV 时,单位晶胞体积随压力的减小表现出斜率变化,表明存在二级同构相变。我们的结果表明,奇异的双组份原子氢的前体可能由高度扭曲的 hcp 布里渊区和分子对称破缺引起的电子跃迁组成。