Liang Tao, Zeng Zhidan, Yang Ziyin, Lan Fujun, Lou Hongbo, Yang Chendi, Peng Di, Liu Yuxin, Luo Tao, Xing Zhenfang, Wang Qing, Ke Haibo, Yang Yong, Che Renchao, Sheng Hongwei, Mao Ho-Kwang, Zeng Qiaoshi
Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
Shanghai Institute of Laser Plasma, Shanghai, China.
Nat Commun. 2025 Jul 1;16(1):5777. doi: 10.1038/s41467-025-61260-9.
High pressure can significantly alter atomic and electronic structures of materials, resulting in unique properties. However, pressure-induced changes are often reversible, limiting their fundamental research and practical applications under ambient conditions. Here, we introduce a general method to preserve high-pressure solids under ambient conditions. By using freestanding carbon-gold-nanoparticle-carbon sandwiched thin films as precursors, we synthesize nanostructured diamond capsules that encapsulate high-pressure gold via an amorphous carbon-to-diamond transition. The preserved pressure is demonstrated to be tunable, ranging from 15.6 to 26.2 GPa, as the synthesis pressure increases from 32.0 to 56.0 GPa. This study establishes a scalable method to preserve high-pressure solids with controllable particle size and distribution through thin film engineering. Moreover, it enables in situ characterization of high-pressure solids with high spatial resolution at the atomic scale using electron beams, as well as other general diagnostic probes, and provides a viable route for large-scale applications of high-pressure solids.
高压能显著改变材料的原子结构和电子结构,从而产生独特的性质。然而,压力诱导的变化通常是可逆的,这限制了它们在环境条件下的基础研究和实际应用。在此,我们介绍一种在环境条件下保存高压固体的通用方法。通过使用独立的碳-金-纳米颗粒-碳夹心薄膜作为前驱体,我们合成了纳米结构的金刚石胶囊,其通过非晶碳到金刚石的转变来封装高压金。随着合成压力从32.0吉帕增加到56.0吉帕,所保存的压力被证明是可调的,范围从15.6吉帕到26.2吉帕。这项研究建立了一种可扩展的方法,通过薄膜工程来保存具有可控粒径和分布的高压固体。此外,它能够使用电子束以及其他通用诊断探针在原子尺度上对高压固体进行具有高空间分辨率的原位表征,并为高压固体的大规模应用提供了一条可行的途径。