Suppr超能文献

利用谷歌趋势预测某大型医疗保健系统的儿科呼吸道合胞病毒就诊情况

Using Google Trends to Predict Pediatric Respiratory Syncytial Virus Encounters at a Major Health Care System.

机构信息

Department of Otolaryngology-Head & Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3N5, Canada.

Division of Otolaryngology-Head & Neck Surgery, Duke University Medical Center, Durham, NC, USA.

出版信息

J Med Syst. 2020 Jan 30;44(3):57. doi: 10.1007/s10916-020-1526-8.

Abstract

To assess whether Google search activity predicts lead-time for pediatric respiratory syncytial virus (RSV) encounters within a major health care system. Internet user search and health system encounter database analysis. Pediatric RSV encounter volumes across all clinics and hospitals in the Duke Health system were tabulated from 2005 to 2016. North Carolina Google user search activity for RSV were obtained over the same time period. Time series analysis was used to compare RSV encounters and search activity. Cross-correlation was used to determine the 'lag' time difference between Google user search interest for RSV and observed Pediatric RSV encounter volumes. Google search activity and Pediatric RSV encounter volumes demonstrated strong seasonality with predilection for winter months. Granger Causality testing revealed that North Carolina RSV Google search activity can predict pediatric RSV encounters at our health system (F = 5.72, p < 0.0001). Using cross-correlation, increases in Google search activity provided lead time of 0.21 weeks (1.47 days) prior to observed increases in Pediatric RSV encounter volumes at our health system. RSV is a common cause of upper airway obstruction in pediatric patients for which pediatric otolaryngologists are consulted. We demonstrate that Google search activity can predict RSV patient interactions with a major health system with a measurable lead-time. The ability to predict when illnesses in a population result in increased health care utilization would be an asset to health system providers, planners and administrators. Prediction of RSV would allow specific care pathways to be developed and resource needs to be anticipated before actual presentation.

摘要

评估 Google 搜索活动是否可以预测主要医疗保健系统内儿科呼吸道合胞病毒 (RSV) 就诊的提前期。互联网用户搜索和健康系统遭遇数据库分析。从 2005 年到 2016 年,统计了杜克健康系统所有诊所和医院的儿科 RSV 就诊量。在此期间还获取了北卡罗来纳州的 Google 用户对 RSV 的搜索活动。使用时间序列分析比较了 RSV 就诊量和搜索活动。使用互相关来确定 Google 用户对 RSV 的搜索兴趣与观察到的儿科 RSV 就诊量之间的“滞后”时间差。Google 搜索活动和儿科 RSV 就诊量均显示出强烈的季节性,倾向于冬季月份。格兰杰因果关系检验表明,北卡罗来纳州的 RSV Google 搜索活动可以预测我们健康系统中的儿科 RSV 就诊量(F = 5.72,p < 0.0001)。使用互相关,Google 搜索活动的增加可在我们健康系统中观察到儿科 RSV 就诊量增加之前提供 0.21 周(1.47 天)的提前期。RSV 是小儿上呼吸道阻塞的常见原因,小儿耳鼻喉科医生会对此进行咨询。我们证明,Google 搜索活动可以预测主要医疗保健系统中 RSV 患者与系统的互动,并且具有可衡量的提前期。预测人群中的疾病如何导致医疗保健利用率增加,这将是医疗系统提供者、规划者和管理者的一项资产。预测 RSV 可以在实际就诊之前制定特定的护理路径并预测资源需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验