Suppr超能文献

在临床环境中使用电子鼻进行人体挥发物分析以评估未控制的哮喘。

Human volatilome analysis using eNose to assess uncontrolled asthma in a clinical setting.

作者信息

Farraia Mariana, Cavaleiro Rufo João, Paciência Inês, Castro Mendes Francisca, Rodolfo Ana, Rama Tiago, Rocha Sílvia M, Delgado Luís, Brinkman Paul, Moreira André

机构信息

EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.

Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.

出版信息

Allergy. 2020 Jul;75(7):1630-1639. doi: 10.1111/all.14207. Epub 2020 Feb 13.

Abstract

BACKGROUND

Analyses of exhaled volatile organic compounds (VOCs) have shown promising results when distinguishing individuals with asthma. Currently, there are no biomarkers for uncontrolled asthma. Therefore, we aimed to assess, in a real-life clinical setting, the ability of the exhaled VOC analysis, using an electronic nose (eNose), to identify individuals with uncontrolled asthma.

METHODS

A cross-sectional study was conducted, and breath samples from 199 participants (130 females, aged 6-78, 66% with asthma) were analysed using an eNose. A multivariate unsupervised cluster analysis, using the resistance data from 32 sensors, could distinguish three clusters of VOC patterns in the training and testing groups. Comparisons between the clusters were performed using the one-way ANOVA, Kruskal-Wallis and chi-squared tests.

RESULTS

In the training set (n = 121), three different clusters covering asthma, lung function, symptoms in the previous 4 weeks and age were identified. The pairwise comparisons showed significant differences with respect to chest tightness during exercise, dyspnoea and gender. These findings were confirmed in the testing set (n = 78) where the training model identified three clusters. The participants who reported fewer respiratory symptoms (dyspnoea and night-time awakenings) were grouped into one cluster, while the others comprised participants who showed similar poor control over symptoms with the distribution of the individuals with asthma being significantly different between them.

CONCLUSIONS

In a clinical setting, the analysis of the exhaled VOC profiles using an eNose could be used as a fast and noninvasive complementary assessment tool for the detection of uncontrolled asthma symptoms.

摘要

背景

呼出挥发性有机化合物(VOCs)分析在区分哮喘患者时已显示出有前景的结果。目前,尚无用于未控制哮喘的生物标志物。因此,我们旨在在现实临床环境中评估使用电子鼻(eNose)进行呼出VOC分析识别未控制哮喘患者的能力。

方法

进行了一项横断面研究,使用电子鼻分析了199名参与者(130名女性,年龄6 - 78岁,66%患有哮喘)的呼吸样本。使用来自32个传感器的电阻数据进行多变量无监督聚类分析,可在训练组和测试组中区分出三类VOC模式。使用单因素方差分析、Kruskal - Wallis检验和卡方检验对这些聚类进行比较。

结果

在训练集(n = 121)中,识别出了涵盖哮喘、肺功能、前4周症状和年龄的三种不同聚类。两两比较显示在运动时的胸闷、呼吸困难和性别方面存在显著差异。这些发现在测试集(n = 78)中得到证实,训练模型在其中识别出了三个聚类。报告较少呼吸道症状(呼吸困难和夜间觉醒)的参与者被归为一个聚类,而其他聚类包括症状控制同样较差的参与者,哮喘患者在这些聚类中的分布存在显著差异。

结论

在临床环境中,使用电子鼻分析呼出VOC谱可作为一种快速且无创的补充评估工具,用于检测未控制的哮喘症状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验