Suppr超能文献

氧化铜纳米颗粒对 的生长和酵母-菌丝过渡的阻碍。

Impediment to growth and yeast-to-hyphae transition in by copper oxide nanoparticles.

机构信息

Biofouling and Thermal Ecology Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India.

Life sciences Department, Homi Bhabha National Institute, Anushaktinagar, Mumbai, India.

出版信息

Biofouling. 2020 Jan;36(1):56-72. doi: 10.1080/08927014.2020.1715371. Epub 2020 Jan 30.

Abstract

The effects of two prominent copper oxide nanoparticles (CuO-NP and CuO-NP), with the oxidation state of Cu (cupric) and Cu (cuprous), on were evaluated. CuO-NP and CuO-NP were synthesized and characterized by XRD, FESEM, HR-TEM and Zeta potential. At sub-MIC (50 µg ml), both cupric and cuprous oxide NPs prevented yeast-to-hyphae switching and wrinkling behaviour in . The mechanism for the antifungal action of the two NPs differed; CuO-NP significantly elicited reactive oxygen species, whereas membrane damage was more pronounced with CuO-NP. Real time PCR analysis revealed that CuO-NP suppressed the morphological switching of yeast-to-hyphae by down-regulating , and and by up-regulation of the negative regulator . In comparison, CuO-NP resulted in down-regulation of and up-regulation of the negative regulators and . Between the two NPs, CuO exhibited increased antifungal activity due to its stable oxidation state (Cu) and its smaller dimensions compared with CuO-NP.

摘要

研究了两种具有代表性的氧化铜纳米粒子(CuO-NP 和 CuO-NP),其铜的氧化态分别为 Cu(二价铜)和 Cu(一价铜),对 的影响。通过 XRD、FESEM、HR-TEM 和 Zeta 电位对 CuO-NP 和 CuO-NP 进行了合成和表征。在亚 MIC(50μg/ml)浓度下,两种氧化铜纳米粒子均能阻止酵母向菌丝的转化和 的皱缩行为。这两种纳米粒子的抗真菌作用机制不同;CuO-NP 显著诱导线粒体产生活性氧,而 CuO-NP 则更明显地导致细胞膜损伤。实时 PCR 分析表明,CuO-NP 通过下调 和 以及上调负调控因子 来抑制酵母向菌丝的形态转变。相比之下,CuO-NP 导致 和负调控因子 和 的下调和上调。与 CuO-NP 相比,CuO 由于其稳定的氧化态(Cu)和较小的尺寸,表现出更高的抗真菌活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验