Suppr超能文献

通过瞳孔测量揭示的言语分类的自主神经系统关联

Autonomic Nervous System Correlates of Speech Categorization Revealed Through Pupillometry.

作者信息

Lewis Gwyneth A, Bidelman Gavin M

机构信息

Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States.

School of Communication Sciences and Disorders, The University of Memphis, Memphis, TN, United States.

出版信息

Front Neurosci. 2020 Jan 10;13:1418. doi: 10.3389/fnins.2019.01418. eCollection 2019.

Abstract

Human perception requires the many-to-one mapping between continuous sensory elements and discrete categorical representations. This grouping operation underlies the phenomenon of categorical perception (CP)-the experience of perceiving discrete categories rather than gradual variations in signal input. Speech perception requires CP because acoustic cues do not share constant relations with perceptual-phonetic representations. Beyond facilitating perception of unmasked speech, we reasoned CP might also aid the extraction of target speech percepts from interfering sound sources (i.e., noise) by generating additional perceptual constancy and reducing listening effort. Specifically, we investigated how noise interference impacts cognitive load and perceptual identification of unambiguous (i.e., categorical) vs. ambiguous stimuli. Listeners classified a speech vowel continuum (/u/-/a/) at various signal-to-noise ratios (SNRs [unmasked, 0 and -5 dB]). Continuous recordings of pupil dilation measured processing effort, with larger, later dilations reflecting increased listening demand. Critical comparisons were between time-locked changes in eye data in response to unambiguous (i.e., continuum endpoints) tokens vs. ambiguous tokens (i.e., continuum midpoint). Unmasked speech elicited faster responses and sharper psychometric functions, which steadily declined in noise. Noise increased pupil dilation across stimulus conditions, but not straightforwardly. Noise-masked speech modulated peak pupil size (i.e., [0 and -5 dB] > unmasked). In contrast, peak dilation latency varied with both token and SNR. Interestingly, categorical tokens elicited earlier pupil dilation relative to ambiguous tokens. Our pupillary data suggest CP reconstructs auditory percepts under challenging listening conditions through interactions between stimulus salience and listeners' internalized effort and/or arousal.

摘要

人类感知需要连续的感官元素与离散的类别表征之间进行多对一的映射。这种分组操作是类别感知(CP)现象的基础——即感知离散类别而非信号输入的逐渐变化的体验。言语感知需要类别感知,因为声学线索与感知语音表征之间不存在恒定关系。除了有助于对未被掩蔽的言语的感知外,我们推断类别感知还可能通过产生额外的感知恒常性并减少听力努力,来帮助从干扰声源(即噪声)中提取目标言语感知。具体而言,我们研究了噪声干扰如何影响明确(即类别性)与模糊刺激的认知负荷和感知识别。听众在各种信噪比(SNR,分别为未被掩蔽、0和 -5 dB)下对一个言语元音连续体(/u/-/a/)进行分类。瞳孔扩张的连续记录测量了处理努力程度,瞳孔扩张越大、越晚,反映出听力需求增加。关键的比较是针对明确(即连续体端点)音素与模糊音素(即连续体中点)的眼动数据的时间锁定变化。未被掩蔽的言语引发更快的反应和更清晰的心理测量函数,而在噪声环境中这些函数会稳步下降。噪声在所有刺激条件下都会增加瞳孔扩张,但并非直接增加。噪声掩蔽的言语调制了峰值瞳孔大小(即[0和 -5 dB] > 未被掩蔽)。相比之下,峰值扩张潜伏期随音素和信噪比而变化。有趣的是,类别性音素相对于模糊音素引发更早的瞳孔扩张。我们的瞳孔数据表明,在具有挑战性的听力条件下,类别感知通过刺激显著性与听众内在努力和/或唤醒之间的相互作用来重构听觉感知。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4c9/6967406/30b31ba6ab64/fnins-13-01418-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验