Davydov Denis, Gerasimov Tymofiy, Pelteret Jean-Paul, Steinmann Paul
1Chair of Applied Mechanics, University of Erlangen-Nuremberg, Egerlandstr. 5, 91058 Erlangen, Germany.
2Institute of Applied Mechanics, Technische Universitaet Braunschweig, Bienroder Weg 87, 38106 Braunschweig, Germany.
Adv Model Simul Eng Sci. 2017;4(1):7. doi: 10.1186/s40323-017-0093-0. Epub 2017 Dec 12.
In this paper the -adaptive partition-of-unity method and the - and -adaptive finite element method are applied to eigenvalue problems arising in quantum mechanics, namely, the Schrödinger equation with Coulomb and harmonic potentials, and the all-electron Kohn-Sham density functional theory. The partition-of-unity method is equipped with an a posteriori error estimator, thus enabling implementation of error-controlled mesh refinement strategies. To that end, local interpolation error estimates are derived for the partition-of-unity method enriched with a class of exponential functions. The efficiency of the -adaptive partition-of-unity method is compared to the - and -adaptive finite element method. The latter is implemented by adopting the analyticity estimate from Legendre coefficients. An extension of this approach to multiple solution vectors is proposed. Numerical results confirm the theoretically predicted convergence rates and remarkable accuracy of the -adaptive partition-of-unity approach. Implementational details of the partition-of-unity method related to enforcing continuity with hanging nodes are discussed.
在本文中,将β自适应单位分解法以及γ和δ自适应有限元法应用于量子力学中出现的特征值问题,即具有库仑势和谐振子势的薛定谔方程,以及全电子科恩-沈密度泛函理论。单位分解法配备了后验误差估计器,从而能够实施误差控制的网格细化策略。为此,针对用一类指数函数增强的单位分解法,推导了局部插值误差估计。将β自适应单位分解法的效率与γ和δ自适应有限元法进行了比较。后者通过采用勒让德系数的解析性估计来实现。提出了将此方法扩展到多个解向量的方案。数值结果证实了β自适应单位分解法理论上预测的收敛速度和显著的精度。讨论了与用悬挂节点强制连续性相关的单位分解法的实现细节。