Suppr超能文献

多药耐药菌中 AcrB 的底物依赖型转运机制。

Substrate-dependent transport mechanism in AcrB of multidrug resistant bacteria.

机构信息

School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington.

出版信息

Proteins. 2020 Jul;88(7):853-864. doi: 10.1002/prot.25877. Epub 2020 Feb 8.

Abstract

The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram-negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton-motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all-atom simulation is, however, impractical. Here, we develop a hybrid coarse-grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse-grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.

摘要

多药耐药(MDR)系统有效地将抗生素从导致细菌感染的细菌中排出,这引发了严重的问题。除了药物之外,吲哚是细菌的一种常见代谢废物,革兰氏阴性菌的 MDR 系统也会将其排出以维持生存。实验结果表明,AcrB 是 MDR 系统的关键组成部分之一,由于质子动力过程,在泵送过程中会发生大规模构象变化。然而,由于时间尺度极短,难以观察(实验中)AcrB 中的这些变化,这可能有助于泵送过程。分子模拟可以帮助理解吲哚在 AcrB 中的转运构象变化。然而,使用全原子模拟来检查构象变化是不切实际的。在这里,我们开发了一种混合粗粒力场来研究单体 II 中 porter 结构域中吲哚存在时 AcrB 的构象变化。使用粗粒力场,我们研究了一系列模型系统中 AcrB 的构象变化,考虑了单体 II 跨膜结构域中天冬氨酸(Asp)残基 Asp407 和 Asp408 质子化的影响。我们的结果表明,在吲哚存在的情况下,Asp408 或 Asp407 残基的质子化会导致单体 II 从结合态到挤出态的构象变化,而其余两个单体(I 和 III)在 AcrB 蛋白中接近进入态。我们还观察到,在没有吲哚的情况下,所有三个 AcrB 单体都倾向于回到进入态。进行了导向分子动力学模拟,以证明质子化系统中吲哚转运机制的可行性。通过 AcrB 鉴定吲哚转运途径可以帮助理解 MDR 细菌使用的药物外排机制。

相似文献

引用本文的文献

本文引用的文献

1
Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.水介导的相互作用使细菌外排泵能够顺利地输送底物。
Biochim Biophys Acta Gen Subj. 2018 Apr;1862(4):836-845. doi: 10.1016/j.bbagen.2018.01.010. Epub 2018 Jan 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验