School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington.
Proteins. 2020 Jul;88(7):853-864. doi: 10.1002/prot.25877. Epub 2020 Feb 8.
The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram-negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton-motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all-atom simulation is, however, impractical. Here, we develop a hybrid coarse-grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse-grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.
多药耐药(MDR)系统有效地将抗生素从导致细菌感染的细菌中排出,这引发了严重的问题。除了药物之外,吲哚是细菌的一种常见代谢废物,革兰氏阴性菌的 MDR 系统也会将其排出以维持生存。实验结果表明,AcrB 是 MDR 系统的关键组成部分之一,由于质子动力过程,在泵送过程中会发生大规模构象变化。然而,由于时间尺度极短,难以观察(实验中)AcrB 中的这些变化,这可能有助于泵送过程。分子模拟可以帮助理解吲哚在 AcrB 中的转运构象变化。然而,使用全原子模拟来检查构象变化是不切实际的。在这里,我们开发了一种混合粗粒力场来研究单体 II 中 porter 结构域中吲哚存在时 AcrB 的构象变化。使用粗粒力场,我们研究了一系列模型系统中 AcrB 的构象变化,考虑了单体 II 跨膜结构域中天冬氨酸(Asp)残基 Asp407 和 Asp408 质子化的影响。我们的结果表明,在吲哚存在的情况下,Asp408 或 Asp407 残基的质子化会导致单体 II 从结合态到挤出态的构象变化,而其余两个单体(I 和 III)在 AcrB 蛋白中接近进入态。我们还观察到,在没有吲哚的情况下,所有三个 AcrB 单体都倾向于回到进入态。进行了导向分子动力学模拟,以证明质子化系统中吲哚转运机制的可行性。通过 AcrB 鉴定吲哚转运途径可以帮助理解 MDR 细菌使用的药物外排机制。