Suppr超能文献

LexA 自我切割的特异性决定因素,LexA 是细菌 SOS 诱变的关键调节因子。

Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis.

机构信息

Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania , 3610 Hamilton Walk, Philadelphia, Pennsylvania 19014, United States.

出版信息

Biochemistry. 2014 May 20;53(19):3158-68. doi: 10.1021/bi500026e. Epub 2014 May 8.

Abstract

Bacteria utilize the tightly regulated stress response (SOS) pathway to respond to a variety of genotoxic agents, including antimicrobials. Activation of the SOS response is regulated by a key repressor-protease, LexA, which undergoes autoproteolysis in the setting of stress, resulting in derepression of SOS genes. Remarkably, genetic inactivation of LexA's self-cleavage activity significantly decreases acquired antibiotic resistance in infection models and renders bacteria hypersensitive to traditional antibiotics, suggesting that a mechanistic study of LexA could help inform its viability as a novel target for combating acquired drug resistance. Despite structural insights into LexA, a detailed knowledge of the enzyme's protease specificity is lacking. Here, we employ saturation and positional scanning mutagenesis on LexA's internal cleavage region to analyze >140 mutants and generate a comprehensive specificity profile of LexA from the human pathogen Pseudomonas aeruginosa (LexAPa). We find that the LexAPa active site possesses a unique mode of substrate recognition. Positions P1-P3 prefer small hydrophobic residues that suggest specific contacts with the active site, while positions P5 and P1' show a preference for flexible glycine residues that may facilitate the conformational change that permits autoproteolysis. We further show that stabilizing the β-turn within the cleavage region enhances LexA autoproteolytic activity. Finally, we identify permissive positions flanking the scissile bond (P4 and P2') that are tolerant to extensive mutagenesis. Our studies shed light on the active site architecture of the LexA autoprotease and provide insights that may inform the design of probes of the SOS pathway.

摘要

细菌利用严格调控的应激反应(SOS)途径来应对各种遗传毒性药物,包括抗生素。SOS 反应的激活受关键的阻遏物-蛋白酶 LexA 调节,LexA 在应激条件下发生自身切割,从而解除 SOS 基因的阻遏。值得注意的是,LexA 自我切割活性的遗传失活显著降低了感染模型中的获得性抗生素耐药性,并使细菌对传统抗生素敏感,这表明对 LexA 的机制研究可能有助于评估其作为一种新型抗获得性耐药性靶标的可行性。尽管对 LexA 有结构上的了解,但缺乏对该酶蛋白酶特异性的详细了解。在这里,我们对 LexA 的内部切割区域进行饱和和位置扫描诱变,分析了 >140 个突变体,并生成了来自人类病原体铜绿假单胞菌(LexAPa)的 LexA 综合特异性图谱。我们发现 LexAPa 活性位点具有独特的底物识别模式。P1-P3 位优先选择小的疏水性残基,这表明与活性位点的特异性接触,而 P5 和 P1'位则显示出对灵活的甘氨酸残基的偏好,这可能有助于允许自身切割的构象变化。我们进一步表明,稳定切割区域内的β-转角可增强 LexA 自身切割活性。最后,我们确定了位于切口(P4 和 P2')侧翼的允许位置,它们对广泛的诱变具有耐受性。我们的研究阐明了 LexA 自身蛋白酶的活性位点结构,并提供了可能有助于 SOS 途径探针设计的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验