Suppr超能文献

基于区域生长和局部自适应阈值的视盘检测。

A region growing and local adaptive thresholding-based optic disc detection.

机构信息

Department of Electrical and Computer Engineering, COMSATS University, Islamabad, Pakistan.

出版信息

PLoS One. 2020 Jan 30;15(1):e0227566. doi: 10.1371/journal.pone.0227566. eCollection 2020.

Abstract

Automatic optic disc (OD) localization and segmentation is not a simple process as the OD appearance and size may significantly vary from person to person. This paper presents a novel approach for OD localization and segmentation which is fast as well as robust. In the proposed method, the image is first enhanced by de-hazing and then cropped around the OD region. The cropped image is converted to HSV domain and then V channel is used for OD detection. The vessels are extracted from the Green channel in the cropped region by multi-scale line detector and then removed by the Laplace Transform. Local adaptive thresholding and region growing are applied for binarization. Furthermore, two region properties, eccentricity, and area are then used to detect the true OD region. Finally, ellipse fitting is used to fill the region. Several datasets are used for testing the proposed method. Test results show that the accuracy and sensitivity of the proposed method are much higher than the existing state-of-the-art methods.

摘要

自动视盘(OD)定位和分割不是一个简单的过程,因为 OD 的外观和大小可能因人而异而有很大的差异。本文提出了一种快速而鲁棒的 OD 定位和分割的新方法。在提出的方法中,图像首先通过去雾增强,然后在 OD 区域周围裁剪。裁剪后的图像转换为 HSV 域,然后使用 V 通道进行 OD 检测。在裁剪区域中,通过多尺度线检测器提取血管,并通过拉普拉斯变换去除。应用局部自适应阈值和区域生长进行二值化。此外,还使用两个区域属性,即偏心度和面积来检测真实的 OD 区域。最后,使用椭圆拟合来填充区域。使用多个数据集来测试所提出的方法。测试结果表明,所提出的方法的准确性和灵敏度都高于现有的最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验