Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
Trends Genet. 2020 Dec;36(12):981-997. doi: 10.1016/j.tig.2020.01.001. Epub 2020 Jan 28.
Defective double-strand break (DSB) repair leads to genomic instabilities that may augment carcinogenesis. DSBs trigger transient transcriptional silencing in the vicinity of transcriptionally active genes through multilayered processes instigated by Ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and poly-(ADP-ribose) polymerase 1 (PARP1). Novel factors have been identified that ensure DSB-induced silencing via two distinct pathways: direct inhibition of RNA Polymerase II (Pol II) mediated by negative elongation factor (NELF), and histone code editing by CDYL1 and histone deacetylases (HDACs) that catalyze H3K27me3 and erase lysine crotonylation, respectively. Here, we highlight major advances in understanding the mechanisms underlying transcriptional silencing at DSBs, and discuss its functional implications on repair. Furthermore, we discuss consequential links between DSB-silencing factors and carcinogenesis and discuss the potential of exploiting them for targeted cancer therapy.
双链断裂(DSB)修复缺陷会导致基因组不稳定性,从而可能促进癌症的发生。DSB 通过由共济失调毛细血管扩张突变(ATM)、DNA 依赖性蛋白激酶(DNA-PK)和聚(ADP-核糖)聚合酶 1(PARP1)引发的多层过程,在转录活跃基因的附近引发瞬时转录沉默。已经确定了一些新的因素,它们通过两种不同的途径来确保 DSB 诱导的沉默:由负伸长因子(NELF)介导的直接抑制 RNA 聚合酶 II(Pol II),以及由 CDYL1 和组蛋白去乙酰化酶(HDACs)催化的组蛋白密码编辑,它们分别催化 H3K27me3 和消除赖氨酸巴豆酰化。在这里,我们强调了在理解 DSB 处转录沉默的机制方面的主要进展,并讨论了其对修复的功能意义。此外,我们还讨论了 DSB 沉默因子与癌症发生之间的必然联系,并讨论了利用它们进行靶向癌症治疗的潜力。