Suppr超能文献

相似文献

3
Modulation of CHT7 Complexes during Light/Dark- and Nitrogen-Mediated Life Cycle Transitions of Chlamydomonas.
Plant Physiol. 2020 Dec;184(4):1762-1774. doi: 10.1104/pp.20.00864. Epub 2020 Oct 1.
4
Recovery from N Deprivation Is a Transcriptionally and Functionally Distinct State in .
Plant Physiol. 2018 Mar;176(3):2007-2023. doi: 10.1104/pp.17.01546. Epub 2017 Dec 29.
5
The protein Compromised Hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15833-8. doi: 10.1073/pnas.1414567111. Epub 2014 Oct 13.
6
A mechanistic insight on how Compromised Hydrolysis of Triacylglycerol 7 (CHT7) restrains the involvement of it's CXC domain from quiescence repression.
Int J Biol Macromol. 2024 Apr;265(Pt 1):130844. doi: 10.1016/j.ijbiomac.2024.130844. Epub 2024 Mar 13.
7
8
Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses.
Genetics. 2009 Mar;181(3):889-905. doi: 10.1534/genetics.108.099382. Epub 2008 Dec 15.
9
SUMO Protease SMT7 Modulates Ribosomal Protein L30 and Regulates Cell-Size Checkpoint Function.
Plant Cell. 2020 Apr;32(4):1285-1307. doi: 10.1105/tpc.19.00301. Epub 2020 Feb 14.
10
When to Sleep? CHT7 Is Critical for Nutrient-Dependent Quiescence in Chlamydomonas.
Plant Cell. 2020 Apr;32(4):810-811. doi: 10.1105/tpc.20.00069. Epub 2020 Feb 4.

引用本文的文献

4
MicroRNA Expression Profile Analysis of during Lipid Accumulation Process under Nitrogen Deprivation Stresses.
Bioengineering (Basel). 2021 Dec 27;9(1):6. doi: 10.3390/bioengineering9010006.
5
Modulation of CHT7 Complexes during Light/Dark- and Nitrogen-Mediated Life Cycle Transitions of Chlamydomonas.
Plant Physiol. 2020 Dec;184(4):1762-1774. doi: 10.1104/pp.20.00864. Epub 2020 Oct 1.
6
When to Sleep? CHT7 Is Critical for Nutrient-Dependent Quiescence in Chlamydomonas.
Plant Cell. 2020 Apr;32(4):810-811. doi: 10.1105/tpc.20.00069. Epub 2020 Feb 4.

本文引用的文献

1
The PSIPRED Protein Analysis Workbench: 20 years on.
Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407. doi: 10.1093/nar/gkz297.
3
SOL1 and SOL2 regulate fate transition and cell divisions in the stomatal lineage.
Development. 2019 Feb 4;146(3):dev171066. doi: 10.1242/dev.171066.
4
IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding.
Nucleic Acids Res. 2018 Jul 2;46(W1):W329-W337. doi: 10.1093/nar/gky384.
5
TSO1 and MYB3R1 form a regulatory module to coordinate cell proliferation with differentiation in shoot and root.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E3045-E3054. doi: 10.1073/pnas.1715903115. Epub 2018 Mar 13.
7
Recovery from N Deprivation Is a Transcriptionally and Functionally Distinct State in .
Plant Physiol. 2018 Mar;176(3):2007-2023. doi: 10.1104/pp.17.01546. Epub 2017 Dec 29.
8
Flocculation of with Different Phenotypic Traits by Metal Cations and High pH.
Front Plant Sci. 2017 Nov 20;8:1997. doi: 10.3389/fpls.2017.01997. eCollection 2017.
9
Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes.
Crit Rev Biochem Mol Biol. 2017 Dec;52(6):638-662. doi: 10.1080/10409238.2017.1360836. Epub 2017 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验