Suppr超能文献

一种带有删失的分层贝叶斯潜在类混合模型,用于检测抗生素耐药性的线性时间变化。

A hierarchical Bayesian latent class mixture model with censorship for detection of linear temporal changes in antibiotic resistance.

机构信息

Department of Statistics, Iowa State University, Ames, Iowa, United States of America.

Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America.

出版信息

PLoS One. 2020 Jan 31;15(1):e0220427. doi: 10.1371/journal.pone.0220427. eCollection 2020.

Abstract

Identifying and controlling the emergence of antimicrobial resistance (AMR) is a high priority for researchers and public health officials. One critical component of this control effort is timely detection of emerging or increasing resistance using surveillance programs. Currently, detection of temporal changes in AMR relies mainly on analysis of the proportion of resistant isolates based on the dichotomization of minimum inhibitory concentration (MIC) values. In our work, we developed a hierarchical Bayesian latent class mixture model that incorporates a linear trend for the mean log2MIC of the non-resistant population. By introducing latent variables, our model addressed the challenges associated with the AMR MIC values, compensating for the censored nature of the MIC observations as well as the mixed components indicated by the censored MIC distributions. Inclusion of linear regression with time as a covariate in the hierarchical structure allowed modelling of the linear creep of the mean log2MIC in the non-resistant population. The hierarchical Bayesian model was accurate and robust as assessed in simulation studies. The proposed approach was illustrated using Salmonella enterica I,4,[5],12:i:- treated with chloramphenicol and ceftiofur in human and veterinary samples, revealing some significant linearly increasing patterns from the applications. Implementation of our approach to the analysis of an AMR MIC dataset would provide surveillance programs with a more complete picture of the changes in AMR over years by exploring the patterns of the mean resistance level in the non-resistant population. Our model could therefore serve as a timely indicator of a need for antibiotic intervention before an outbreak of resistance, highlighting the relevance of this work for public health. Currently, however, due to extreme right censoring on the MIC data, this approach has limited utility for tracking changes in the resistant population.

摘要

识别和控制抗菌药物耐药性(AMR)的出现是研究人员和公共卫生官员的首要任务。这项控制工作的一个关键组成部分是利用监测计划及时检测新出现或不断增加的耐药性。目前,AMR 的时间变化检测主要依赖于基于最小抑菌浓度(MIC)值二分法分析耐药分离株的比例。在我们的工作中,我们开发了一个分层贝叶斯潜在类别混合模型,该模型包含非耐药人群的平均 log2MIC 的线性趋势。通过引入潜在变量,我们的模型解决了与 AMR MIC 值相关的挑战,补偿了 MIC 观察值的截尾性质以及由截尾 MIC 分布指示的混合成分。在分层结构中包含时间作为协变量的线性回归允许对非耐药人群中平均 log2MIC 的线性蠕变进行建模。分层贝叶斯模型在模拟研究中被证明是准确和稳健的。该方法通过在人类和兽医样本中用氯霉素和头孢噻呋处理沙门氏菌 I,4,[5],12:i:-,说明了一些从应用中明显线性增加的模式。将我们的方法应用于 AMR MIC 数据集的分析,通过探索非耐药人群中平均耐药水平的模式,为监测计划提供了多年来 AMR 变化的更全面的情况。因此,我们的模型可以作为在耐药爆发之前进行抗生素干预的及时指标,强调了这项工作对公共卫生的重要性。然而,目前由于 MIC 数据的极端右截尾,这种方法对于跟踪耐药人群的变化的实用性有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a93/6993983/226fc267a80d/pone.0220427.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验