Suppr超能文献

贝叶斯方法在抗菌药物多药耐药性建模中的应用。

A Bayesian approach to modeling antimicrobial multidrug resistance.

机构信息

Department of Statistics, Iowa State University, Ames, Iowa, United States of America.

Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America.

出版信息

PLoS One. 2021 Dec 29;16(12):e0261528. doi: 10.1371/journal.pone.0261528. eCollection 2021.

Abstract

Multidrug resistance (MDR) has been a significant threat to public health and effective treatment of bacterial infections. Current identification of MDR is primarily based upon the large proportions of isolates resistant to multiple antibiotics simultaneously, and therefore is a belated evaluation. For bacteria with MDR, we expect to see strong correlations in both the quantitative minimum inhibitory concentration (MIC) and the binary susceptibility as classified by the pre-determined breakpoints. Being able to detect correlations from these two perspectives allows us to find multidrug resistant bacteria proactively. In this paper, we provide a Bayesian framework that estimates the resistance level jointly for antibiotics belonging to different classes with a Gaussian mixture model, where the correlation in the latent MIC can be inferred from the Gaussian parameters and the correlation in binary susceptibility can be inferred from the mixing weights. By augmenting the laboratory measurement with the latent MIC variable to account for the censored data, and by adopting the latent class variable to represent the MIC components, our model was shown to be accurate and robust compared with the current assessment of correlations. Applying the model to Salmonella heidelberg samples isolated from human participants in National Antimicrobial Resistance Monitoring System (NARMS) provides us with signs of joint resistance to Amoxicillin-clavulanic acid & Cephalothin and joint resistance to Ampicillin & Cephalothin. Large correlations estimated from our model could serve as a timely tool for early detection of MDR, and hence a signal for clinical intervention.

摘要

多药耐药性 (MDR) 一直是公共卫生和有效治疗细菌感染的重大威胁。目前对 MDR 的鉴定主要基于同时对多种抗生素具有耐药性的分离株的比例较大,因此是一种滞后的评估。对于具有 MDR 的细菌,我们期望在定量最小抑菌浓度 (MIC) 和根据预定临界点分类的二元药敏性之间看到强相关性。能够从这两个角度检测到相关性,可以主动发现多药耐药细菌。在本文中,我们提供了一个贝叶斯框架,该框架使用高斯混合模型联合估计属于不同类别的抗生素的耐药水平,其中潜在 MIC 中的相关性可以从高斯参数中推断出来,二元药敏性中的相关性可以从混合权重中推断出来。通过将潜在 MIC 变量与实验室测量值结合起来,以解释截尾数据,并采用潜在类别变量来表示 MIC 成分,与当前的相关性评估相比,我们的模型表现出了准确性和稳健性。将该模型应用于从国家抗菌药物监测系统 (NARMS) 中分离的人类参与者的海德堡沙门氏菌样本,我们发现了对阿莫西林-克拉维酸和头孢噻吩以及氨苄西林和头孢噻吩联合耐药的迹象。我们模型估计的大相关性可以作为早期检测 MDR 的及时工具,从而为临床干预提供信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/938d/8716034/e0f7bcad2df9/pone.0261528.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验