Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.
Data Science Institute, Hasselt University, Diepenbeek, Belgium.
PLoS One. 2022 Dec 1;17(12):e0277866. doi: 10.1371/journal.pone.0277866. eCollection 2022.
Monitoring and investigating temporal trends in antimicrobial data is a high priority for human and animal health authorities. Timely detection of temporal changes in antimicrobial resistance (AMR) can rely not only on monitoring and analyzing the proportion of resistant isolates based on the use of a clinical or epidemiological cut-off value, but also on more subtle changes and trends in the full distribution of minimum inhibitory concentration (MIC) values. The nature of the MIC distribution is categorical and ordinal (discrete). In this contribution, we developed a particular family of multicategory logit models for estimating and modelling MIC distributions over time. It allows the detection of a multitude of temporal trends in the full discrete distribution, without any assumption on the underlying continuous distribution for the MIC values. The experimental ranges of the serial dilution experiments may vary across laboratories and over time. The proposed categorical model allows to estimate the MIC distribution over the maximal range of the observed experiments, and allows the observed ranges to vary across labs and over time. The use and performance of the model is illustrated with two datasets on AMR in Salmonella.
监测和调查抗菌药物数据的时间趋势是人类和动物健康当局的高度优先事项。及时发现抗菌药物耐药性(AMR)的时间变化不仅可以依靠监测和分析基于临床或流行病学截断值的耐药分离株的比例,还可以依靠最小抑菌浓度(MIC)值全分布中更微妙的变化和趋势。MIC 分布的性质是分类和有序(离散)的。在本研究中,我们开发了一种特殊的多类别逻辑模型家族,用于估计和建模随时间变化的 MIC 分布。它允许在全离散分布中检测到大量的时间趋势,而无需对 MIC 值的潜在连续分布做出任何假设。系列稀释实验的实验范围可能因实验室和时间而异。所提出的分类模型允许在观察到的实验的最大范围内估计 MIC 分布,并允许观察到的范围在不同的实验室和时间内变化。该模型的使用和性能通过两个关于沙门氏菌 AMR 的数据集进行了说明。