Suppr超能文献

刺激关系的出现:人类与计算机学习

The Emergence of Stimulus Relations: Human and Computer Learning.

作者信息

Ninness Chris, Ninness Sharon K, Rumph Marilyn, Lawson David

机构信息

Behavioral Software Systems, 2207 Pinecrest Dr, Nacogdoches, TX 75965 USA.

2Texas A&M University-Commerce, Commerce, TX USA.

出版信息

Perspect Behav Sci. 2017 Nov 13;41(1):121-154. doi: 10.1007/s40614-017-0125-6. eCollection 2018 Jun.

Abstract

Traditionally, investigations in the area of stimulus equivalence have employed humans as experimental participants. Recently, however, artificial neural network models (often referred to as connectionist models [CMs]) have been developed to simulate performances seen among human participants when training various types of stimulus relations. Two types of neural network models have shown particular promise in recent years. RELNET has demonstrated its capacity to approximate human acquisition of stimulus relations using simulated matching-to-sample (MTS) procedures (e.g., Lyddy & Barnes-Holmes , , 14-24, 2007). Other newly developed connectionist algorithms train stimulus relations by way of compound stimuli (e.g., Tovar & Chavez , , 747-762, 2012; Vernucio & Debert , , 439-449, 2016). What makes all of these CMs interesting to many behavioral researchers is their apparent ability to simulate the acquisition of diversified stimulus relations as an analogue to human learning; that is, neural networks learn over a series of training epochs such that these models become capable of deriving novel or untrained stimulus relations. With the goal of explaining these quickly evolving approaches to practical and experimental endeavors in behavior analysis, we offer an overview of existing CMs as they apply to behavior-analytic theory and practice. We provide a brief overview of derived stimulus relations as applied to human academic remediation, and we argue that human and simulated human investigations have symbiotic experimental potential. Additionally, we provide a working example of a neural network referred to as emergent virtual analytics (EVA). This model demonstrates a process by which artificial neural networks can be employed by behavior-analytic researchers to understand, simulate, and predict derived stimulus relations made by human participants.

摘要

传统上,刺激等价性领域的研究一直将人类作为实验参与者。然而,近年来已经开发出人工神经网络模型(通常称为联结主义模型[CMs]),以模拟人类参与者在训练各种类型的刺激关系时的表现。近年来,有两种类型的神经网络模型显示出特别的前景。RELNET已经证明了其使用模拟样本匹配(MTS)程序(例如,Lyddy & Barnes-Holmes,第14 - 24页,2007年)来近似人类对刺激关系的习得的能力。其他新开发的联结主义算法通过复合刺激来训练刺激关系(例如,Tovar & Chavez,第747 - 762页,2012年;Vernucio & Debert,第439 - 449页,2016年)。所有这些CMs令许多行为研究人员感兴趣的是它们明显能够模拟多样化刺激关系的习得,作为人类学习的一种类似物;也就是说,神经网络在一系列训练周期中学习,使得这些模型能够推导出新颖的或未经训练的刺激关系。为了解释这些在行为分析的实践和实验努力中迅速发展的方法,我们概述了现有的CMs在行为分析理论和实践中的应用。我们简要概述了应用于人类学术补救的派生刺激关系,并认为人类和模拟人类的研究具有共生的实验潜力。此外,我们提供了一个称为涌现虚拟分析(EVA)的神经网络的工作示例。该模型展示了行为分析研究人员可以使用人工神经网络来理解、模拟和预测人类参与者建立的派生刺激关系的过程。

相似文献

1
The Emergence of Stimulus Relations: Human and Computer Learning.刺激关系的出现:人类与计算机学习
Perspect Behav Sci. 2017 Nov 13;41(1):121-154. doi: 10.1007/s40614-017-0125-6. eCollection 2018 Jun.
10

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验