Suppr超能文献

MoSDeF,一个用于大规模软物质计算筛选的 Python 框架:在润滑单层膜中的化学-性质关系中的应用。

MoSDeF, a Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films.

出版信息

J Chem Theory Comput. 2020 Mar 10;16(3):1779-1793. doi: 10.1021/acs.jctc.9b01183. Epub 2020 Mar 2.

Abstract

We demonstrate how the recently developed Python-based Molecular Simulation and Design Framework (MoSDeF) can be used to perform molecular dynamics screening of functionalized monolayer films, focusing on tribological effectiveness. MoSDeF is an open-source package that allows for the programmatic construction and parametrization of soft matter systems and enables TRUE (transferable, reproducible, usable by others, and extensible) simulations. The MoSDeF-enabled screening identifies several film chemistries that simultaneously show low coefficients of friction and adhesion. We additionally develop a Python library that utilizes the RDKit cheminformatics library and the scikit-learn machine learning library that allows for the development of predictive models for the tribology of functionalized monolayer films and use this model to extract information on terminal group characteristics that most influence tribology, based on the screening data.

摘要

我们展示了如何使用最近开发的基于 Python 的分子模拟和设计框架(MoSDeF)来进行功能化单层膜的分子动力学筛选,重点关注摩擦学效果。MoSDeF 是一个开源软件包,允许对软物质系统进行编程式构建和参数化,并实现 TRUE(可转移、可重现、可被他人使用和可扩展)模拟。MoSDeF 支持的筛选确定了几种同时表现出低摩擦系数和低粘附力的薄膜化学物质。我们还开发了一个 Python 库,该库利用 RDKit 化学信息学库和 scikit-learn 机器学习库,允许为功能化单层膜的摩擦学开发预测模型,并根据筛选数据,使用该模型提取对摩擦学影响最大的末端基团特性的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验