Brough David B, Wheeler Daniel, Kalidindi Surya R
School of Computational Science and Engineering, Georgia Institute of Technology, 30332, Atlanta, USA.
Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 20899, Gaithersburg, USA.
Integr Mater Manuf Innov. 2017 Mar;6(1):36-53. doi: 10.1007/s40192-017-0089-0. Epub 2017 Mar 15.
There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.
迫切需要定制化分析,这种分析要考虑到材料内部结构在多个长度尺度上的随机性质,以便提取相关且可转移的知识。数据驱动的过程-结构-性能(PSP)联系为社区驱动的材料知识编纂及其向设计和制造专家的转移提供了系统、模块化和分层的框架。Python中的材料知识系统项目(PyMKS)是首个开源材料数据科学框架,可用于为分层材料创建高价值的PSP联系,供材料科学与工程、制造、机器学习和数据科学领域的专家利用。本文描述了该资源库的主要功能,以及研究人员群体如何访问、利用这些功能并可能进一步完善它们的示例。