Suppr超能文献

scikit-matter:源自化学与材料科学的一套可通用的机器学习方法。

scikit-matter : A Suite of Generalisable Machine Learning Methods Born out of Chemistry and Materials Science.

作者信息

Goscinski Alexander, Principe Victor Paul, Fraux Guillaume, Kliavinek Sergei, Helfrecht Benjamin Aaron, Loche Philip, Ceriotti Michele, Cersonsky Rose Kathleen

机构信息

Laboratory of Computational Science and Modeling (COSMO), Institute of Materials, Ecole Polytechnique Federale de Lausanne, Lausanne, Vaud, 1015, Switzerland.

Pacific Northwest National Laboratory, Richland, WA, 99352, USA.

出版信息

Open Res Eur. 2023 Sep 18;3:81. doi: 10.12688/openreseurope.15789.2. eCollection 2023.

Abstract

Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows.

摘要

诸如scikit-learn之类易于使用的库加速了机器学习(ML)工作流程和数据驱动方法的采用与应用。虽然这些库中实现的许多算法都源自特定的科学领域,但它们之所以广受欢迎,部分原因在于其在多个领域的通用性。在过去二十年中,化学和材料科学界的研究人员提出了通用的机器学习方法。然而,由于与特定领域功能的纠缠,将这些方法部署到其他领域的工作流程中往往很繁琐。我们展示了python库scikit-matter,它针对计算化学和材料科学界开发的方法进行与领域无关的实现,遵循scikit-learn的API和编码准则,以提高与现有工作流程的可用性和互操作性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099c/10792273/a4ee1782ac50/openreseurope-3-17559-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验