Yurdagul Arif, Subramanian Manikandan, Wang Xiaobo, Crown Scott B, Ilkayeva Olga R, Darville Lancia, Kolluru Gopi K, Rymond Christina C, Gerlach Brennan D, Zheng Ze, Kuriakose George, Kevil Christopher G, Koomen John M, Cleveland John L, Muoio Deborah M, Tabas Ira
Department of Medicine, Columbia University, New York, NY 10032, USA.
Department of Medicine, Columbia University, New York, NY 10032, USA; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India.
Cell Metab. 2020 Mar 3;31(3):518-533.e10. doi: 10.1016/j.cmet.2020.01.001. Epub 2020 Jan 30.
Continual efferocytic clearance of apoptotic cells (ACs) by macrophages prevents necrosis and promotes injury resolution. How continual efferocytosis is promoted is not clear. Here, we show that the process is optimized by linking the metabolism of engulfed cargo from initial efferocytic events to subsequent rounds. We found that continual efferocytosis is enhanced by the metabolism of AC-derived arginine and ornithine to putrescine by macrophage arginase 1 (Arg1) and ornithine decarboxylase (ODC). Putrescine augments HuR-mediated stabilization of the mRNA encoding the GTP-exchange factor Dbl, which activates actin-regulating Rac1 to facilitate subsequent rounds of AC internalization. Inhibition of any step along this pathway after first-AC uptake suppresses second-AC internalization, whereas putrescine addition rescues this defect. Mice lacking myeloid Arg1 or ODC have defects in efferocytosis in vivo and in atherosclerosis regression, while treatment with putrescine promotes atherosclerosis resolution. Thus, macrophage metabolism of AC-derived metabolites allows for optimal continual efferocytosis and resolution of injury.
巨噬细胞对凋亡细胞(ACs)的持续吞噬清除可防止坏死并促进损伤修复。持续吞噬作用是如何被促进的尚不清楚。在此,我们表明该过程通过将吞噬物质从初始吞噬事件的代谢与后续轮次相联系而得到优化。我们发现,巨噬细胞精氨酸酶1(Arg1)和鸟氨酸脱羧酶(ODC)将AC衍生的精氨酸和鸟氨酸代谢为腐胺可增强持续吞噬作用。腐胺增强了HuR介导的编码GTP交换因子Dbl的mRNA的稳定性,该因子激活调节肌动蛋白的Rac1以促进后续轮次的AC内化。首次摄取AC后,沿此途径的任何步骤受到抑制都会抑制第二次AC内化,而添加腐胺可挽救此缺陷。缺乏髓系Arg1或ODC的小鼠在体内的吞噬作用以及动脉粥样硬化消退方面存在缺陷,而用腐胺治疗可促进动脉粥样硬化的消退。因此,巨噬细胞对AC衍生代谢物的代谢可实现最佳的持续吞噬作用和损伤修复。