Suppr超能文献

2013-2016 年西非埃博拉疫情病死率的时空变异性。

Spatiotemporal variability in case fatality ratios for the 2013-2016 Ebola epidemic in West Africa.

机构信息

MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.

MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.

出版信息

Int J Infect Dis. 2020 Apr;93:48-55. doi: 10.1016/j.ijid.2020.01.046. Epub 2020 Jan 28.

Abstract

BACKGROUND

For the 2013-2016 Ebola epidemic in West Africa, the largest Ebola virus disease (EVD) epidemic to date, we aim to analyse the patient mix in detail to characterise key sources of spatiotemporal heterogeneity in the case fatality ratios (CFR).

METHODS

We applied a non-parametric Boosted Regression Trees (BRT) imputation approach for patients with missing survival outcomes and adjusted for model imperfection. Semivariogram analysis and kriging were used to investigate spatiotemporal heterogeneities.

RESULTS

CFR estimates varied significantly between districts and over time over the course of the epidemic. BRT modelling accounted for most of the spatiotemporal variation and interactions in CFR, but moderate spatial autocorrelation remained for distances up to approximately 90 km. Combining district-level CFR estimates and kriged district-level residuals provided the best linear unbiased predicted map of CFR accounting for the both explained and unexplained spatial variation. Temporal autocorrelation was not observed in the district-level residuals from the BRT estimates.

CONCLUSIONS

This study provides new insight into the epidemiology of the 2013-2016 West African Ebola epidemic with a view of informing future public health contingency planning, resource allocation and impact assessment. The analytical framework developed in this analysis, coupled with key domain knowledge, could be deployed in real time to support the response to ongoing and future outbreaks.

摘要

背景

针对 2013-2016 年西非埃博拉疫情,这是迄今为止规模最大的埃博拉病毒病(EVD)疫情,我们旨在详细分析患者构成,以描述病死率(CFR)时空异质性的关键来源。

方法

我们采用非参数 Boosted Regression Trees(BRT)缺失生存结果插补方法,并针对模型缺陷进行了调整。半变异分析和克里金用于研究时空异质性。

结果

在疫情期间,CFR 估计值在地区之间和随时间变化差异显著。BRT 模型能够解释 CFR 中的大部分时空变化和相互作用,但在距离约 90km 以内仍存在中度空间自相关。结合地区层面的 CFR 估计值和克里金地区层面的残差,可以提供 CFR 的最佳线性无偏预测图,同时考虑了已解释和未解释的空间变化。在 BRT 估计的地区层面残差中未观察到时间自相关。

结论

本研究深入了解了 2013-2016 年西非埃博拉疫情的流行病学特征,以期为未来的公共卫生应急规划、资源分配和影响评估提供信息。本分析中开发的分析框架结合关键领域知识,可以实时部署以支持对正在进行和未来的疫情做出响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验