Suppr超能文献

线性和机器学习模型在时空疾病预测中的应用:恰加斯病的感染力度。

Linear and Machine Learning modelling for spatiotemporal disease predictions: Force-of-Infection of Chagas disease.

机构信息

School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom.

London Centre for Neglected Tropical Disease Research & MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.

出版信息

PLoS Negl Trop Dis. 2022 Jul 19;16(7):e0010594. doi: 10.1371/journal.pntd.0010594. eCollection 2022 Jul.

Abstract

BACKGROUND

Chagas disease is a long-lasting disease with a prolonged asymptomatic period. Cumulative indices of infection such as prevalence do not shed light on the current epidemiological situation, as they integrate infection over long periods. Instead, metrics such as the Force-of-Infection (FoI) provide information about the rate at which susceptible people become infected and permit sharper inference about temporal changes in infection rates. FoI is estimated by fitting (catalytic) models to available age-stratified serological (ground-truth) data. Predictive FoI modelling frameworks are then used to understand spatial and temporal trends indicative of heterogeneity in transmission and changes effected by control interventions. Ideally, these frameworks should be able to propagate uncertainty and handle spatiotemporal issues.

METHODOLOGY/PRINCIPAL FINDINGS: We compare three methods in their ability to propagate uncertainty and provide reliable estimates of FoI for Chagas disease in Colombia as a case study: two Machine Learning (ML) methods (Boosted Regression Trees (BRT) and Random Forest (RF)), and a Linear Model (LM) framework that we had developed previously. Our analyses show consistent results between the three modelling methods under scrutiny. The predictors (explanatory variables) selected, as well as the location of the most uncertain FoI values, were coherent across frameworks. RF was faster than BRT and LM, and provided estimates with fewer extreme values when extrapolating to areas where no ground-truth data were available. However, BRT and RF were less efficient at propagating uncertainty.

CONCLUSIONS/SIGNIFICANCE: The choice of FoI predictive models will depend on the objectives of the analysis. ML methods will help characterise the mean behaviour of the estimates, while LM will provide insight into the uncertainty surrounding such estimates. Our approach can be extended to the modelling of FoI patterns in other Chagas disease-endemic countries and to other infectious diseases for which serosurveys are regularly conducted for surveillance.

摘要

背景

恰加斯病是一种长期存在的疾病,具有较长的无症状期。累积感染指标(如流行率)并不能说明当前的流行病学情况,因为它们整合了长期的感染情况。相反,感染强度(Force-of-Infection,FoI)等指标可以提供关于易感人群感染速度的信息,并可以更准确地推断感染率的时间变化。通过拟合(催化)模型来估计 FoI,这些模型可以利用现有的按年龄分层的血清学(真实)数据。然后,使用预测性 FoI 建模框架来了解传播的空间和时间趋势,以及控制干预措施所带来的变化。理想情况下,这些框架应该能够传播不确定性并处理时空问题。

方法/主要发现:我们比较了三种方法在传播不确定性和为哥伦比亚恰加斯病提供 FoI 可靠估计方面的能力,这是一个案例研究:两种机器学习(Machine Learning,ML)方法(Boosted Regression Trees(BRT)和 Random Forest(RF)),以及我们之前开发的线性模型(Linear Model,LM)框架。我们的分析表明,在受审查的三种建模方法之间,结果具有一致性。所选择的预测因子(解释变量)以及 FoI 最不确定值的位置在各个框架之间是一致的。RF 比 BRT 和 LM 更快,并且在没有真实数据的地区进行外推时,提供的估计值具有较少的极端值。然而,BRT 和 RF 在传播不确定性方面效率较低。

结论/意义:FoI 预测模型的选择将取决于分析的目标。ML 方法将有助于描述估计值的平均行为,而 LM 将提供有关此类估计值周围不确定性的深入了解。我们的方法可以扩展到其他恰加斯病流行国家的 FoI 模式建模以及其他经常进行血清学监测的传染病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ed/9337653/7a8a59107371/pntd.0010594.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验